AD-A130 885 DYNAMIC PROGRAMMING ALGORITHMS AND ANALYSES FOR /2
NONSERIAL NETWORKS® PART I..(U) GEORGIA INST GOF TECH
ATLANTA SCHOOL OF INDUSTRIAL AND SYSTEMS. A 0 ESOGBUE
UNCLASSIFIED JAN B3 ARD-17672.1-MA-H DAAG29-80-G-0010 F/G 12/2 NL

EEN - EEEEEEEEE

iy 25
I2s s e

: L:é l2.8 I245

Hm_————ﬁ m [Y] 122
gy ™

R

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

o m et L

T s R 3 PRI

ADAL 3URBS

el

SECURITY CLASSIFICATION OF Y HIS "'a“ (When Data Entered)

1. REPORT NUMBER

STRUCTIONS
BEFORE COMPLETING FORM
2 GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

AD- AROAYS

REPORT DOCUMENTATION PAGE

17672.1-MA-H
TITLE (and Subtitle) 8. YYPE OF REPORT & PERIOD COVERED
Final:
Dynamic Programming Algorithms and Analyses for 25 Sep 80 - 2

Nonserial Networks: Part | t. PERFORMING ORG. REPORT NUMBER

AU THOR(s) %, CONTRACT OR GRANT NUMBER(s)

Augustine 0. Esogbue DAAG29 80 G 0010

PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::221"‘0&&{55:‘T'upuRucoé’EEg:' TASK
Georgia Institute of Technology

Atlanta, GA 30332

CONTROLLING OF FICE NAME AND ADDRESS 12. REPORT DATE

U. S. army Research Office Jan 83

Post Office Box 12211 13. NUMBER OF PAGES

Research Triangle Park, NC 27709 106

MONITORING AGENCY NAME & AGDRESS(if ditterent from Controlling Otlice) 15. SECURITY CLASS. (of thie report)

15e. DECL ASSI FICATION/ DOWNGRADING
SCHEOULE

16. OISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (of the abetrect enlered In Block 20, 11 difterent troo: Report)

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the
autpoY(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation

19. KEY WORDS (Continue on reveree side I necessary and Identily by block number)

computer programming
nonserial networks

operations research
dynamic programming

PThis report discusses the research conducted by the research team at the Georgia

20. ADSTRACT (Contisue en reverse sidv i neceesary axd identify by block aumber)

Institute of Technology in the area of nonserial dynamic programming networks. The
problems, approach and major results are summarized in Chapter 1, while the rest
of the chapters discuss, in detail, the algorithm developments, experiments with
sample problems, and algorithmic complexities. Lach chapter contains detailed
computer flow charts for the algorithms developed. Chapter 6 employs an efficient
dimensionality reduction algorithm known as the Imbedded state space method in conf

FORM
DD janwm EO1TION OF ! NOV 65 IS OBSOLETE ¢

UNCLASSIFIED

‘ SECURITY CLASSIFICATION OF THIS PAGE (Wiven Data Entered)

junction with the one developed in this stydy to treat an otherise intcactabloeeed -

Py

-

e ——

FERIE

R ST T Ry

P, b -

M =

R LS

.]

A B

s B e e e =t i —— i = i ot v

SECU."”Y CLASSIFICATION OF THIS PAGE(When Dele Entered)

£

b

ABSTRACT (cont.)

f%&probiem involving feedforward loop systems. These algorithms are useful inputs

to the development of dynamic programming based strategies for the analysis of
complex nonserial networks .

\ \ SECURITY CLASSIFICATION OF TNIS PAGE(When Dats Entered)

successful attempts to generaljze or develop a theory applicable to most, if not

B ey g b e e 30 AR L b A MBS ittt 4t .

DYNAMIC PROGRAMMING ALGURITIIMS AND ANALYSES
FOR
NONSER1AL NETWOKKS: PART I
By

Augustine 0. Esogbue

Completion Report
GTRI Project Nos. E-24-623 and 645
ARO No. DAAG 29-80-G-00l0
Initiated: October 1980

Completed: January 1983

The work upon which this report is based was supported by the U.S. Army

Rescarch Oflice and the Atlanta University through a subcontract to the

Georgia Institute of Technology, Atlanta, Cedruiu.

School of Industrial and Systems Engincering
Georgia Institute of Technology

Atlanta, Georgia 30332

i al etad

<« A

SR ——

e N

|
¥
{
g

RETTN

5
s
!
{

P
;.

ACKNOWLEDGEMENTS

This study was conducted under a subcontract from the Aclanta University
as part of the U.S. Army Research Office Prime Grant No. DAAG 29-80-G-0010
(GTRI Project No. E-24~623 and E-24-645). We are grateful to Drs. Chandra
and Boggs of the Mathematrics Division, USARO for considering and funding
the project. We are also grateful to the officials of the Atlanta
University and Georgia Tech for making it possible for Dr. Warsi and me
to participate in what was originally a joint research effort. Dr. Warsi
contributed to the development of the methods of complexity analysis which
were used in the algorithmic analyses throughout this report.

I am very grateful to my doctoral student, Mr. Chaeyoung Lee for
programming and computational assistance. The report benefitted from the
diligent typing of Ms. Pamela Singleton, my secretary, who also coordinated

other aspects of the project.

Augustine O. Esogbue, Ph.D.
Professor and Principal Investigator
Georgila Institute of Technology

ii

P

b’
i
}
!

t
'
'

-

L3

ABSTRACT

This report discusses the research conducted by the research team
at the Georgia Institute of Technology in the area of nonserial dynamic ;
programming networks. The problems, approach and major results are |
summarized in Chapter 1, while the rest of the chapters discuss, in
detail, the algorithm developments, experiments with sample problems,
and algorithmic complexities. Each chapter contains detailed computer
flow charts for the algorithms developed. Chapter 6 employs an efficient
dimensionality reduction algorithm known as the imbedded state space
method in conjunction with the one developed in this study to treat an
otherwise intractable problem involving feedforward loop systems. These
algorithms are useful inputs to the development of dynamic programming

based strategies for the analysis of complex nonserial networks.

1ii

o o e

ARPPRIOM AR v 2 %, 17

B RtttV —r—rgrerery

P

¥

TABLE OF CONTENTS

[ammn) L] [] —— [(]

ACKNOWLEDGMENTS ii
: ABSTRACT 1i1 :
l Chapter Page | :
' 1. NONSERIAL DYNAMIC PROGRAMMING NETWORKS: THE PROBLEM, APPROACH,
. l AND MAJOR RESULTS & © ¢ & & o o & o o o o o o o o o s o o o o o o « 1
2 1.1 Introduction . « ¢ & ¢ ¢ 4t i ettt h e e e e e e e e e e)
ui l 1.2 A General Nonserial System: Some Motivations 1
- 1.3 Previous Related Works . . « v v ¢ ¢ 4 v ¢ 4 ¢ o o o« o o o o o« o & 4
L 1.4 Research Objectives ¢ ¢ ¢ & ¢ ¢ ¢ ¢t ¢t v ¢ o 4 o s o o . b :
I 1.5 Research Plan and ReSUlLS « + « v &« ¢« ¢ v 4 v v o v o o o o o o o 7 ¥
. 1.5.1 Phase 1 & . & & ¢ i v v vt 6 ettt e e e e e e e e e e e . 1 3
T 1.5.2 Phase 2 v v v v 4 4 v et e e e e e e e e e e e e e e ee.. 8 i
. 1.5.3 Phase 3 +v v v v ¢ o e o o o o o o o o s 6 o e e e e e e 10 !
I 1.5048 Phase 4 . . & 4 o it i e i e e e e e e e e e e e e e e e .1 :
] n 1.5.5 Phase 5 . ¢ ¢ & ¢t v ¢ v v 4 bttt e e e e e e e e e e e e e .11
i 1.5.6 Phase 6 . . e e
l 1.6 Reporrt Outllne D

2. ANALYSIS OF DIVERGING BRANCH NONSERIAL NETWORKS ¢« . « « « « . 13

S) e Sl AT 1.

2.1 Development of a Dynamic Programming Algorithm for the Diverging
Branch System e e o e s s 4 e s s . B i
For the Diverging Branch (from stage 11 to stage Ml) e« -« . . 14
For the Main Serial Process (from stage 1 to stage S-1)
(prior to junction node) .« . «¢ ¢ 4+ 4 4 4 4 e e e e e . e . . . 14
For the Stage S (junction) .« « & ¢ & ¢ ¢ ¢ ¢ & v v v o o o « « 14
For the Remaining Stages (from stage S + 1 to stage N, the
terminal node) .« ¢ ¢ ittt 4t t h ke e e e e e e e e se e s 15
5 Determination of the Optimal Decision and Return at Each Stage 15
.6 Input Data Required for the Algorithm 16
7 Output List of the Algorithan . . . , « ¢« . . « « « . . 16
The Algorithm: Special Structure and Flowchart 16
Example (A Diverging Branch System) v v v « . . . 21
Analysis of the Diverging Branch System « . . 24
Sensitivity Lo N ¢ & ¢ v ¢ o 6 v e s 4t e s e e e e e e e . 24
Sensitivity to the Complexity of Branches . . . e o« o+ o 26
Sensitivity to the Complexity of Transition Functions e s e s o 20
Sensitivity to the Complexity of Return Functions 28

NN
« .
« .
N =

NN
.
-
.
oW

. -
L\L\L\b&\wN)—')—‘H

.L\UND—‘

et i RS (¥ oliar

- -

R e

NNNNNNNNNN

3. ANALYSIS OF CONVERGING BRANCH NONSERIAL NETWORKS 29

e 0 Yol e A

3.1 Development of a DP Algorithm for the Converging Branch System ., 29

3.1.1 For Stage 1l & & v v i v vt e 6 b e e e e e s se e e ee a3 ;
3.1.2 For Stages 21 tO ML . o . v v v v 4 v 4t 4w h e e e e e3 N’
3.1.3 For the Main Serial Process 31

3.1.4 Determination of the Optimal Decision and Return at Each Stage 32 3
3.1.5 .

3.1.6

Input Data Required for the Algorithm 32 _
Output List of the Algoritha ¢« v v v & ¢« « o« « « 32 ¥

iv

Ny g R

< e W v . N s v —
st g T R e s st e s i Sl

[
l
I
]
]

Chapter Page
3.2 The Algorithm, Flowchart, and Structure . . « « « « o « + = 33
3.3 An Example Involving the Converging Branch Algorithm . . . 33 :
'] 3.4 Analysis of the Converging Branch System +. « . . 40 ;
1 3.4.1 Sensitivity to N . . & 4 ¢ ¢ v v 4 v e et e e e e e e 43 4
F 3.4.2 Sensitivity to the Complexity of Branches « « « « « + « & 44 1
l 3.4.3 Sensitivity to the Complexity of Transition Functions . . 44 H
3.4.4 Sensitivity to the Complexity of Return Functions - . . . 46 !
, 3.5 A Modified Converging Branch Algorithm 46 |
I 3.6 Computational Efficiency of the Converging Branch Algorithm 52 ¥
i 4. ANALYSIS OF FEEDFORWARD LOOP SYSTEMS . . ¢ v & 4« o o o o « & o 57 .
- . 5
l 4.1 The Basic Structure « . « « ¢ + o o o« o o & o o o o o o o » 57 f
T 4.2 The Optimization Procedure ¢ ¢ ¢ ¢ v ¢ o o « o o » 58 ;
‘ 4,2.1 Optimization of the Loop System . . «. + ¢« ¢« « « o « o » & 58 .
4,2.2 Optimization of the Main Serial System . . . « « « « . & 59 '
4.3 An Example of the Feedforward Loop System . « « « « « o« « & 65 ;
4.4 Analysis of the Feedforward Loop System « . « « « « o « o & 70 ¥
4.5 Computational Experiments with the Loop System 72 g
5. ANALYSIS OF FEEDBACK LOOP SYSTEMS ¢ &+ v o o o o = & 73 %
5.1 The Basic Structure and Algorithm « . « . 73 i
5.2 An Example of a Feedback Loop System . . « « & ¢ « ¢ « o & 79 ‘
6. SOLUTION OF SPECIALLY STRUCTURED NONSERIAL NETWORKS VIA THE IMBEDDED
STATE SPACE DYNAMIC PROGRAMMING . . « . ¢ v ¢ ¢ o o o o ¢ o o & 85
6.1 Introduction . « ¢ ¢ ¢ ¢« e v b 4t e e b e e e s e m e e 85
6.2 Outline of .the Imbedded State Space Approach . . . « . « . 85
6.3 An Application of ISSA to a Feedforward Loop System 87
6.4 Analysis of the Imbedded State Space Technique. . . « « . . 93
6.4.1 Storage Requirements for the Input Data . . . « . « « .+ . 93
6.4.2 Storage Requirement for the Three Main Tables 94
6.4.3 Storage Requirement for the Feasibility and Dominance Test 94
6.5 Discussion on the General Nonserial D.P. Network Algorithm and
the Imbedded State Space Technique . . ¢« . ¢« ¢ . ¢ « « & & 95
REFERENCES ¢ ¢« & ¢ ¢ & o ¢ o o o o o s o o s o s s s o s s o o o o« » 97

B e i AT W

ol e

<

{
T o0

Lo B | s)

, FIGURES
»
Figure
. 1.1 An Example of a Large Complex Network
|
L. 2.1 A Diverging Branch System . . . e e .
2.2 Flow Chart of the Diverging Branch Algorlthm
) 2.3 A Dbiverging Branch System Example
l_ 2.4 A Mulcti-Diverging Branch System

A Converging Branch System o« e e s

A Converging Branch System Example
A Multi-Converging Branch System
A Converging Branch System Example . . . , .

Wwwww
.
VMW -

4.1 A Feedforward Loop System . .
‘ 4.2 Flow Chart for the Feedforward Looo System .
l_ 4.3 A Feedforward Loop System Example . . ., , . .
. 5.1 A Feedback Loop System “ e e e e .
l 5.2 Flow Chart for the Feedback Loop System e e e
5.3 A Feedback Loop System Example . . ., . . ., ., .
: 6.1 An Example of a Nonserial Network (Feedforward Loop).
6.2 A General Nonserial Feedforward Loop Network .

LT ey R by = -

s
!

vi

Flow Chart of the Converging Branch Algorithm .

Page

13
18
21
27

30
34
37
45

57
61
65

74
75
79

87
95

' TABLES
|
I" Tables Page
? 1.1 Comparision of Complexities of Diverging and Converging Branch 2
l“ SYSEEMS & & o+ « o o o o o o o + o o o o e 4 8 e e s a e s
P 2.1 The Return and the Transformation Functionsin the System 21 ¢
. 2.2 Optimal Solution to the System Posed in the Example 23 é
l" 2.3 Computer Output Showing Stage Returns and Decisions 25 X
. 2.4 Computer Storage Requirements of the Diverging Branch Problem . 27 ¥
i . The Return and Transformation Function in the System 130 !

Optimal Solution to the System ¢« ¢ ¢ ¢« ¢ v s & « « 134
Computer Output of Example of Fig. 3.3 41
Computational Experience with the Converging Branch System . . . 44
The Return and Transformation Functions with Constraints

in the System 47
Optimal Solution to the System of Fig. 3.5 and Table 3.5 49
Computer Output of Constrained Example Problem 51
Computational Storage Requirement and CPU Time for the

Converging Branch System . . . « ¢« ¢« + 4 ¢ ¢ ¢ o o & & e .« . 52
Storage Requirement and CPU Times for Different Number of

SLAZES . « - 4 o s o« o s s e o ¢ 4 e s e 2 s e e s s e s e 4 e« 54

[] [%
e

WWWwWwWw
. L

VoS WN

wWww
.
0~ O

w
.
(Y]

The Return and Transition Function for the System of

Fige 4.3 & ¢ ¢ 0 v i 6 o o v e v i e e e e e e e e e « o« . 65
4.2 Computer Output of Feedforward Loop Example in Fig. 4. 3 .« < . - 67
4.3 Optimal Input, Decision, and Return of the System in

Fig. 4.3 « ¢« ¢ ¢ ¢ ¢« o ¢ . e (0]
4.4 Computer Storage Requirements for the Feedforward
LOOp SYStefM . o ¢ ¢ ¢ o o o s « o o o o 2 s o o » o o s o o o« 12

.'——'-—-«-n-—o.-‘.__ .--.__U‘
'S
ot

The Return and Transition Functions of the System in
Fis. 5'3 . * - L] . » - . Ll L L L] L] . L] . L] . . - - . . .

Computer Output for Feedforward Loop Example in Fig. 5.3 80
5.3 Optimal Input, Decision, and Return from Table 5.2 84

[] .
[V] W
. .
N

6.1 Steps of the Imbedded State Space Algorithm for the
Multidimensional Knapsack Problem+« . .+« « . . . 88
Input Data for the Example c e s e s 4 s s e s s s e s s o o+ 89

.
.
.
.
~J
L .. S . 90 E A g AP RPN YRr, (a2 %

!
?

vii

e A

i B A IR 8 PO

IR N R L L W T

g g By NP O N

e e

Chapter 1

NONSERIAL DYNAMIC PROGRAMMING NETWORKS: THE PROBLEM, APPROACH, AND MAJOR RESULTS

1.1 Introduction

Our overall interest is in the optimal analysis (and/or design; of large
scale sysﬁems. Generally, a large complex system is composed of several inter-
connected subsystems which individually may be simpler than the parent system.
In nonserial systems, the structure of these interconnections creates further
complexity. Such complexities, for example, may be engendered by the presence
of combinations of various nonserial networks.

A nonserial system, as defined by Beightler and Meier [1l], is a system where

at least one subsystem in the system receives inputs from more than one sub-

subsystem or sends outputs to more than one subsystem. It could also be described
as a system where for at least one of the stages, the output is not the inpur to the
next; thus, there exists at least one n such that the output X # x 1’ the input

of the next stage. Nonserial systems are encountered in the study of chemical
processing systems, natural gas transmission pipelines, water resources systems,
energy, production-inventory systems, and various other systems. Practical examples

of these systems are further discussed by Esogbue and Marks [14]. Thus, there exist

important reasons to study such systems.

To motivate our discussion, let us consider a general mathematical formulation

for the following nonserial system, which approximates our concept of a large

scale system.

1.2 A General Nonserial System: Some Motivations

For illustrative purposes, we introduce the following general complex nonserial

system which is an example of a complex network:

el

< i -

P R

Bt B B B B B B B B NN M e e e e

‘}(52/2
d/x m X
23| T 2 12
x57 5 \Y
X X b4
<4—— 7 — F 35 3 p—13 1 et
*70 ms 1B s : fm 5
X
67 6 34‘ 3 '.:n1
7.'17 \ X
*u6 4 14
Mg
A

Figure 1.1: An Example of a Large Complex Network

In the foregoing, let
Yi be the vector of inputs to subsystem i, and

Mi’ the corresponding vector of decision variables, m o€ Mi.

Further, let Zi be defined as the set of output variables to subsystem i, with
z, defined as zi £ Zi’ and fi(Yi, Mi) as the objective function for subsystem i.
In this representation, we may visualizé
zi = Q(Yi, Mi) as the set of interconnection relations for subsystem

i and (Yi’ Mi) £ Si’ where Si is the set of restrictions for subsystem i, Note the
generality of these definitions i.e., fi(.,.) and ¢ (.,.) need not be familiar
functions.

As an example, consider subsystem 3: Y3 = {x23, x13}; 23 = {x35, x3A}. A

mathematical programming formulation for this nonserial sysrem is the following:

7
max 121 fi(Yi’ Mi) (1)
s.t. z, = ¢(Yi, Mi) ¥z €2z, i=1,2, ...,7 (2)
, = 3
(\i, Mi)esi i=1,2, ...,7 . (3

Note that this complex system contains subscts of various classical nonserial

systems such as diverging branch, converging branch and feedback loop systems,

. I Wk g e e i :
v Lt e B . o MY e T Nk PP

g A~

I

and as such may be considered a generalized network. Its treatment is thus
nontrival.

When the objective function and the constraints are linear, the resulting
mathematical programming problem can easily be solved via linear programming
methods. When the objective function and the constraints are convex functions
defined over a convex set, the mathematical programming problem becomes a convex
programming problem for which there are methods of solution. However, when any of
the convexity assumptions are dropped, this mathematical programming problem
becomes difficult to solve. Dynamic programming does no: depend upon the nature of
the objective function, constraints, or the construct of the domain of the feasible
region of search. It thus possesses some appeal for solving problems of this genre.

Dynamic programming has been used to optimize nonserial systems in various areas.
Wong and Larson [27] for instance, used dynamic programming in the design and opera-
tion of natural gas transmission pipelines with a diverging branch structure. Mitien
and Nemhauser [19] applied this method to a hypothetical chemical process which con-
tained a recycle feedback loop around a reactor. Beightler and Meier [2] considered
the application of d&namic programming to a river basin reservoir system with a
converging branch structure. Esogbue and Marks [15] studied several project
scheduling and resource allocation problems of the CPM-Cost variety in which the
precedence relationships possess a nonserial structure. Some efficient dynamic
programming based procedures for network compression were advanced.

Obviously, more real life systems can be formulated as nonserial dynamic
programming problems. The limited invocation of the method for the analysis of
more complex structural systems is attributable, in the main, to the lack of a suffi-
ciently "nth" order theory of nonserial svstems and to the usual computational

Problems that have plagued the application of dynamic programming. Methods for

alleviating the computational burden so frequently encountered can be found in

T P

ES—

Ry

A oyl DA

PR e, A€ (PR

i i A DAY SIOPRGIOIEN] YOO TS WS S

R

Lo

43

B N N i

..Il!mmull.; 4||anwf||lLk

s

another paper by Esogbue and Marks [l4].

1.3 Previous Related Works

A number of contributors to the state of knowledge of nonserial dynamic
programming deserve mention. Wilde and Beightler {26] and Nemhauser [21] reviewed
the basic theory involved in the optimization of the four basic classes of nonserial
systems: 1) diverging branch systems, 2) converging branch systems, 3) feedforward
loop systems, and 4) feedback loop systems. More complicated nonserial systems,
however, cannot be studied unless the results for the previously mentioned four
systems can be applied to the problem. The example in Section 2, for instance,
cannot be optimized efficiently using the method of aonserial dynamic programming
contained in the the original works cited above. Simple modifications and extén-
sions of the theory are not helpful either.

One reason for the above quandry is simply that this system is not composed of
a simple combination of tﬁe above mentioned four classes of nonserial systems. wé
are thus unable to determine the order in which the subsystems should be optimized,
so that the dynamic programming procedure can be performed efficiently.

Another important reason is that computational techniques capabie of being
used to tackle the nonserial examples given in the literature do not exist. Further-
more, the issues are not discussed anywhere. One is left to impute that traditional
computational problems inhibiting widespread use of dynamic programming become
exacerbated in the nonserial case.

Among the major contributors to the current literature of dyanmic programming
are Bertele and Brioschi [5, 6, 7, 8]. However, their main concern is with the

optimization of a problem whose objective function has the following specialized form:

min F(X) = min I fi(xi)
X X deT (4)

ey R gy 54

¥

“_’ -.-u-» 4

.

4-..._,.
? q !

'
'
'
'

T

. b e PP A Ak ARG S e

in which
X = {xl, Xps eres xn} is a set of discrete variables, oy being the (5)
number of feasible values of the variable xi.
T=4{1,2, ..., t} and X' c x. (6)

In the above, the function F(X) is called the objective function and the functions
fi(Xi) are the components of the objective function. Before Bertele and Brioschi
can optimize this problem via dynamic programming, the order in which the compo-
nents of the objective function are to be optimized by the dynamic programming
procedure has to be determined, so that the number of computations for the problem
can be minimized. A series of algorithms using graph theory concepts to determine
this optimal order is then developed. While these contributions are important,

the limitations of the problem addressed and thus the algorithms are evident. The
other contributors to the computational aspects of nonserial dynamic programming
include Beightler, Johnson and Wilde [1]}, Parker [24], Parker and Crisp [25] and
Brown [9]. The superposition approach suggested by Beightler et al [1] for
treating converging branch systems under the assumption of linear return and transi-
tion functions with additive compositor operator was extended to nonlinear con-
verging branch systems by Parker and Crisp {25]. An extension of some of these
concepts to feedforward and feedback loop systems was presented by Parker. In [9]
Brown considers a different approach to the analysis of converging branch systems
under both deterministic and stochastic return and transition functions. The
procedure considers the nonserial converging branch system as a serial system by
grouping the stages of the two branches together into new two dimensional stages.
In this case,the input and output state vectors, as well as the decision vectors,
are all two dimensional. The approach, although apparently demanding on the storage

requirement, has interesting features especially with regards to the analysis of

stochastic systems.

AL P

-y o

RSN

|

|
i
1
i
IL
I,

-

FE A ST H VRPOIRCEpI Y Py SR =T VIC- S

4 P, B, D NP W W

4
¢

-
[

——
L]

Because of our concern for complexity reduction, we have demonstrated in [15]
that an adroit combination of certain potent but hitherto isolated concepts and
techniques of large scale problem solving can lead to the solution,ivia nonserial
dynamic programming, of certain interesting nonserial systems. Specifically,
efficient formulations for treating a three branch converging system, a system
with multipaths departing from a junction, and a complex converging-diverging-
converging system, were developed By an adroit synthesis of the pseudo stage
concept (Beightler and Meier [2 }), Nemhauser and Ullman's method [23] and an
optimal elimination technique akin to Bertele aﬁd Brioschi [6]. This method proved
to be considerably more efficient than the solo application of any of the foregoing
or any currently available algorithm.

1.4 Research Objectives

The overall objective of this research is to extend the theory of nonserial
dynamic programming so that it can be applied to most nonserial systems. In [12],’

we demonstrated that the following thrae factors hinder the solution of a problem

by dynamic programming: 1) the amount of high speed memory required for the

problem (space complexity), 2) the total number of calculations required (computa-
tional complexity), and 3) the amount of off-line memory required (space complexity).
With these criteria in mind we wish to develop an algorithm which,in addition, will

give an optimal order-in which the subsystems in any nonserial system should be

optimized.

This is based on the premise that the crucial issue in nonserial systems

research revolves around the set of questions: a) given a complex nonserial system,

how do we collapse it into a serial-like structure? b) in the branch compression

effort, what optimal order should be followed in order for the resultant dynamic

program to be efficient with regards to the usual issues in dynamic programming

algorithm development? While Bertele and Brioschi have proposed an optimal com-

pression order for a highly specialized nonserial form, we are unaware of any

v A e

successful attempts to generalize or develop a theory applicable to most, if not
all, nonserial forms. While we would like to move in this direction, we thought
that our initial efforts should be directed to the development of efficient
algorithms for the treatment of the classical nonserial systems which link up,

on a higher level, to form a complex nonserial system. These algorithms would

be accompanied with detailed treatments of their algorithmic complexities. Such
analyses were particularly missing in previous works in the literature. They are,
however, considered absolutely necessary in fhe development of strategies for

resolving complex nonserial network problens.

1.5 Research Plan and Results

The research consisted of the following six phases:

1.5.1) Phase 1

A number of criteria for discussing efficiency exist. These are, 1n turn,
contingent on the choice of the objective function. In the first phase, we con-
sidered these issues and determined a set of criteria for which we wished to develop
an algorithm. They were based upon the three principal factors which tend to hinder
the solution of a problem via dynamic programming as well as those ‘in combinatoriCS.
Several criteria were examined first before focusing on the most appropriate set
or combinations. Structural characteristics (attributes) of a complex nonserial
system of the type depicted in Fig.l.].wérestudied leading to a grouping of complex

nonserial systems by attributes and by degree of complexity. For example, we

developed a characterization of the complexity of a nonserial network in terms of

the following parameters: N, the number of ncdes; M, the connectedness, and ordering

or arc orientation such as diverging, converging, feedforward, and feedback and
various combinations of each.

Using these parameters, the complexities may be described as follows:

]
B
N
B
.
N
N
X
»
B
B
i
1
i’

’

M

Smamey
-

. ..-'._-_.»,-‘«.-

3

: ! ' «

—
e

1) Large N and simple structure

2) Large N and complex combination of arc orientations such

as converging branch, diverging branch, feedforward and
feedback loops.

3) Small N and simple structure

4) Small N and complex structure

1.5.2) Phase 2

An algorithm was then developed for each of the criteria decided upon in
Phase 1. The algorithms were structured so that the order of optimization of the
subsystems of the classical nonserial systems was the best possible. We invoked
concepts from graph theory, signal flow graphs, and automata theory wherever possible
in the dynamic programming algorithm development.

Using the conventional DP algorithm, a computer code in FORTRAN V was developed
for both the diverging and converging branch systems. Next, detailed computer
algorithms for these systems were constructed. Using algorithm analysis, results
were derived to describe the space and time complexities of these algorithms. For
example, if we let the discretization levels for the state and decision variables be
denoted by KS and KD respeétively, and furtaer let M be the number of stages in the
subbranch while N represents the number in the main serial system, then we obtain the
following results:

a) PFor the Diverging Branch 3vsteu

The maximum space requirement = (M+N+3)Ks, and

The number of computations = (M2+N2+M+N) (KD+1)KS + 4(M+N)+3KS +9

b) For the Converging Branch System

The maximum space requirement = 2K§ +-(}mb+ N+3)KS, and

The number of computations = [(KD+1) (M2+N2+M+N) + 4] Kg + (KD+4)KS +
M 4+ 4N - 1

i " s s

¢

Y R

e

T

e et et g et

o T

hamree m Ty = e

B S SR

!
9
4
K

i E Ew s e

‘- l‘

We sum up the comparisons as follows: (See Table 1.1)

These derived results are important in many ways. For example, they may be used

to compare the computational and space complexities of classical nonserial networks

under the following restrictions:

i) identical number of branches

ii) identical number of nodes in subbranch as well as in the main serial
system, i.e. N = 2M

iii) discretization levels for states and decisions are the same,
i.e. KD = KS.

The following comparisons are instructive:

a) Space complexity comparison:

Space for diverging branch structure = 3(M+1)KS

Space for converging branch structure = (M+2)K§ + (2M+3)KS

b) Computational complexity comparison:

Number of computations for diverging branch structure =
M(SM3)K] + (43K + B + 9
Number of computations for converging branch structure =

M(5M+3)K;-+ (5M2+3M=5)K§ + 4KS + 12M - 1.

-

T A helL e

- ; - T T P PR

g 2 R

. - v A e e o e A £ % S e n s U, ———— e ————

t

——

Table 1.1: Comparison of Complexities of Diverging
and Converging Branch Systems

..
+

' Complexity Complexity as Nature of
- Structure Name a2 function of Complexity
l Diverging branch Space Nuzber of nodes Linear

in the branch

Converging branch Space Nuzber of nodes Linear
in the branch

-

Diverging branch Space Discretization levels | Linear
Converging branch Space Discretization levels Quadratic g
§ Diverging branch Computational | Yumber of nodes Quadratic 1 4

in the branch ;

Converging branch Computational | YNumber of nodes Quadratic
i~ the branch

4-” .
. 3

Diverging branch Computational | Discretization levels | Quadratic

Converging branch Computational | Discretization levels Cubic

We may thus conclude that both from space znd computational complexity considera-
tions, the diverging branch system is less complex than the converging branch

one —~a fact that is suggested by the problsx structure. Detailed analysis

and results appear in the respective chapzars.

1.5.3) Phase 3

High level computer programs in FORIRAXN V were written for both the diverging
branch and converging branch systems. Thes2 were exemplified via several test

problems. The systems were subjected to perturbations in both N and M and return

e T e, 2 DGR B 2+ P, A g

as well as transition functions. Their alzorithmic complexities were experimantally

verified in each case. Refinements in thz zlgorithms were executed by introducing
concepts such as branch compression and nols elimination, especially for complex
multi-branch systems. Detailed computer Iici: charts for each problem were con-

structed. We cnphasize the utility of our zpproach. The algorithms admit input,

—E—E— N

10

|
& j

|
i
!
|

*

/
/
’
'
'

‘- ‘-

‘. ..

-

-l
]

] el wnd wad aml N

[

return, and transition data in terms of functions of the associated variables.
Storage problems were not encountered with this line of pursuit. For programs
involving data structures in the form of tables, see the report by Dr. N. Warsi.

1.5.4) Phase 4

In this phase, the exercises of phases 2 and 3 weve extended to the more
complex systems namely the feedforward and feedback loop systems.

1.5.5) Phase 5

Because of our interest in efficiency of algorithms, we explored the possi-
bility of an adroit combination of algorithms to solve problems which might other-
wise defy solution via a solo application of an algorithm. Thus, we constructed a
feedforward loop example in which the return functions and the constraints possess
a special structure. In particular, the problem had components which had the charac-

teristics of a multidimensional nonlinear knapsack problem. This problem, as

posed, could not be solved without major modifications in our algorithm. It was,

however, successfully solved using a combination of our algorithm and the imbedded

==

state space dynamic programming routine.
1.5.6 Phase 6

Finally, we considered the following assertion which we developed in tonnection

with our study of nonserial networks of the CPM-Cost variety using the project cost

minimization criterion:

Whenever a network 4s such that fon each activity 4 and §,
with activity 4 preceding activity § (4 <) the set of
paths P and pj containing activities 4 and § respectively

45 given by p; < Pi or Pic by then we can assent that the
functional equation 5n(L) decomposes into a sequence of one
dimensional dynamic programming probLems.

This is a sufficient condition which we can prove rather easily. We attempted to
develop a condition that is both sufficient and necessary with the hope that an

algorithm useful in the analysis of more complex systems may result. However,

e

11

B

Cr e e e e C i s A~ s

because of time and other resource constraints, this line of pursuit was truncated
for the moment.

1.6 Report Qutline

Héving discussed the project background, purpose and major results in this
chapter, we dedicate the rest of the report to the development of the dynamic pro-

gramming analysis of the various classical nonserial systems. We begin with the

e

diverging branch system, the easiest of the systems to analyze. This is treated in:
Chapter 2. The algorithm, flowcharts, sample problems and algorithmic analyses

are given. In Chapter 3, the converging branch system is treated. This chapter
includes two algorithms - the original and a modified one for the purpose of

solving problems with complex functions. In Chapter 4, nonserial systems with

g W g

feedforward loop structures are discussed. The loop system is very complex

o, A7 - v

since it involves a combination of the diverging and converging branch systems.
Chapter 5 considers the feedback loop nonserial problem. This is akir to the
feedforward in many ways. The report is concluded with Chapter 6. In this
chapter, a feedforward loop example was constructed involving return and transi-

tion functions that were different from any type considered previously. In

v

prmta————_——RN R B R AN R e

particular, the return functions were step functions and the resource availability
constraints were expressed in terms of constants. The imbedded state space algorithm

was used in conjunction with our algorithm to solve this problem. The algorithmic l

steps are provided but computer implementation was truncated because of budgetary and
time constraints on this project. It could be seen though that this is a beneficial
and necessary line of pursuit when structurally complex nonserial systems are

being investigated.

A, WD Y AP T

12

B Ay 79

s £

*

Chapter 2

ANALYSIS OF DIVERGING BRANCH NONSERIAL NETWORKS

2.1 Development of a Dynamic Programming Algorithm for the Diverging Branch System

A diverging branch system (see Fig. 2.1) is the easiest of the elementary

nonserial structures to analyze. For simplicity, we first consider a two branch

Ha ano oo

system. The stage transformations and return functions both for a main serial

process and for a branch are defined as follows:

e IR

X 1= tn(xn, dn) , n=1,2, ..., N
xm-l,l = tm].(xm]_’ dml) ’ m=1,2, ..., M

and Xy = tgplxgs dg)

r =r (x d n
W= (ks d) ,

1, 2, ..., N

rm,l - rm,l(xml’ dml) » W

1,2, ..., M

Ml 11

S| o | M1l u Ju | *a

Zz l—uf
o

4—‘1.
wn wn
[« %

w

]

[
""4___.;‘_

S-1

Lz‘
I
lﬁ
v

o]
=
~
t
o}

[72]
J

-

—

<4
-
—

Figure 2.1: _A Diverging Branch System

AT

L S

13

[y L

)
N
N

!

|
N
N
.
K
¥

'
L
)
|
It
I
l

i

Consider the basic system consisting of one main serial system
(n =1, 2, ..., N) and one branch (M =1, 2, ..., M). Let us assume that the

input and decision variables at each stage have the following integer values:

|A
~

’ 1=1,2, essy M

Lxx, 2Ky ;

1<x; <K » 1=1,2, ..., N ;
I

l<d, <P, » 1=1,2, ..., M

lidiipi . i=1,2, ..., N f

To develop our algorithm, we first decompose the network into four phases

and then we employ the usual recursive procedures in optimizing the total return.

The recursion equations for the various phases are defined as follows:

2.1.1) For the Diverging Branch (from stage 11 to stage M1) |
(

fll(xll) = max r
1 <d

X110 49
=P

11
11

f) = max [r
m

1(xml’
1 j-dml :-Pml

where m=2, 3, ..., M

dml) + £

ml(xml m—l,l(tml(xml’ dm))]

Using the above equations, the optimal branch return and optimal decisions

s R S

are computed for each possible value of Xy1°

2.1.2) For the Main Serial Process (from stage 1 to stage S-1,
(prior to junction node)

Ko rom et R R A G R 0 S A Ty b e e,

g |

flgxl) = max rl(xl, dl)

‘ 1<d, <Pl i
£ (x) =max [r (x,d)+ £ ,(t (x,d)] %

I: 1<d <P f
— n— n .

wheren =1, 2, ..., S~1
The optimal return fn(xn)and optimal decision dn at each stage are saved

for each possible input value xn:

Lo 2.1.3) For the Stage S (junction)]

|
- i (%g) = max [rglxg, do) + £) (eo(xg, d) + £, (tg, (rgs d)] 3
. lidsf_PS

B i
Ny N

i 14

-
.
7
-
3

™ ™ 7]

]
Al

\

At this stage, the optimal return f +Wl(xs) is the combination of the

optimal return at stage S, rs(xs, ds) the optimal return from the main serial

process preceding stage S, fs_l(ts(xs, dSl) and the optimal return from ihe

(c.. (x_., d) For each possible value x (x) and d are reserved

branch, f g1 (%g g° S+Ml

Ml
at this stage.

2.1.4) For the Remaining Stages (from stage S + 1 to stage N, the terminal
node)

The optimal return at each remaining stage from S + 1 to N can be obtained
as in the usual serial systems, i.e.,

Eynn () = max [rg Oy, dd) + £ (B Gy)]

1idNiPN

S+1, ..., N

where m

2.1.5) Determination of the Optimal Decision and Return at Each Stage

#
At the final stage N, the optimal input XN to the system can be obtained by

letting

*
L T

o 2K
] *] 3 * 3
With the optimal input Xy and optimal decision dN obtained from a decision table,

* *
we can produce optimal stage return rN and optimal stage output xN__1 as follows:
* (* %
Ty = IO oY
* %
*n-1 = EnO%y DY)
This process continues from stage N down to stage S + 1.
* *
At junction stage (stage S), the optimal stage input Xg and stage decision ds » the
*
optimal branch input 0 are obtained via the transition equation

* % d*
X = tsr(xgs dg)-

For the remaining processes, the stage transformation, return function, and decision

tables can be used at each stzge.

15

Ty

R

-

e T

i

2.1.6) Input Data Required for the Algorithm

The input data for the algorithm are as follows:

N = # of stages in the main serial process

M = # of stages in the branch

S = junction stage .

Kml = upper bound in the input value Xq » m*< 1, 2, ..., M

2.1.7) Output List of the Algorithm

Basically, the output of this algorithm consists of the following:

1. Return table at each stage for each input value.

2. Decision table at each stage for each input value.

3. Optimal input, decisicn, aad return at each stage.

In the next section, we present a companion flow chart for a computer program
to implement the basic algorithm whose steps were detailed above. 1In Section 2.3, a
simple problem is posed and solved. The situation involving a set of constraints
is next treated.

In Section 2.4, the diverging branch problem is analyzed in terms of the
algorithm's sensitivity to a variation in N, the number of stages, the complexity
of branches, as well as the transiticn functions.

2.2 The Algorithm: Special Structure and Flowchart

The high level algorithm developed above and flowcharted in the sequel, although
akin to the conventional dynamic programming version, has some special structures
worthy of note. A direct application of the usual approaches would dictate enormous
storage requirements when processing nonserial networks, thus making the processing
of large networks virtually iméossible. To mitigate this problem, we devise a
technique which enables us to indicate the optimal decision values at each stage by
appending Kd = 1 4+ K to the state entry in the corresponding transaction table, where
K = max {Kll, KlZ’ ey KMl; Kl’ KZ‘ ceey KN} . Although this adds one more state

variable and this stage, it enables us to eliminate the storage requirement for

16

\

the optimal decision which is normally the case with classical algorithms.

any future reference to this table entry is male as the entry Mod Kd' When

needed later, the optimal decision values can be retrieved by searching only one
row of the table for the entry value greater than or equal to Kd.
The computer algorithms developed for the diverging branch system, as

well as for other systems in this report, are done in Fortran. They are based

on the analysis presented in the foregoing sections and flowcharted in Fig. 2.2.
The input data dictated by the dynamic programming constructs are in terms of

functions of the respective variables. This also mckes it possible to handle

N I L e

larger problems without the forbidding storage limitations.

f

I
I£s
\Ls
o
ik
5
'
IF
'
¥
o
)
'

¥

[y

"

!—

[N

M - VYA TR W A gy i e e

T

Fig. 2.2: Flow Chart of the Diverging Branch Algorithm

Read the input data

e ™ ™l "l ™

of stages in a main serial process
of stages in a diverging branch

the stage from which a branch diverges i
Pml(Pn) = ff of levels of the decision at stage ml(n) :

[<3-
Hown

Kml(kn) = {## of levels of the input at stage ml(n)

Define the transition and return functions

t t and r
G > T ml

ml’ S1
n=1, 2,..., N, m =1, 2,..., M

) = max ryy Oy s dpp) | By Oxgy) = max [rgys Gy dpg)* £y g (g O 400

&

f\'.nl (xml
<

<
1l s dml Spml 1 dml Pml

—~—pnd

o —— e e —rn iea e sl wad s avm e v et camama e o RO
. . T e e e ——

L,
__'_

e an e e R AR s . oI D
. !]

_E

No

fn(xn) = max rn(xn, dn) fn(xn) = max [rn(xn, dn) + fn_l(tn(xn, dn))]
l1<d <P l<d <P
n n n n
., R
No
n=n+ 1 n=S5-1
Yes
4
n=n+1
]
v
fn+Ml(xn) = max [tn(xn’ dn) + fn—l(tn(xn’ dn)) + fl‘Il(tnl(rn’ dn)]
isd <P
n n
N
‘— 4 n=n+1
i- fn-*-l\ll(xn) = max [rn(xn’ dn) + frx--l+tv[1(tn(xu’ dn))]
1 l1sd <P
i n n
i No Yes
- n =N

19

oy

-k bs AV PRI R i ermasp S P

T Pevr e ey S

@

(3

*
Decide optimal input x_ such that
*
fN+M1(xN) = max {fN+M1(xN)}

1< xN < KN

*
Find the optimal decision dN.

L

Compute the optimal stage input, decision and return at each

stage using the following

*

r

85 % B

XM;=

xml

Tml

=
tn+l

=r _(x

* %k

w1’ doed)

(x

* a)
rn(xn, .

n
% *

* *
d)

=t %10 Y

* d*
ml “ml’ ml) ’

transition and return functions:

n= N-1,..., 1

n=Ny.oop, 1

m=M1,...,1

m=M,..., 1

t
[l

Stop

20

Print Results

Ty

ey

L

!
2.3 Example (A Diverging Branch System)

Let us explicate the steps of this algorithm by considering an example.
Suppose it is desired to maximize the sum of stage returns as a function of the input

x. for the problem with the structure given in Fig. 2.3 and the data in Table 2.1.

5

21 21 | 11 11

Xg » X, Xy X, X,
———i{::;::———-——-———%h 4 > 3 /P 3)! 1 p—>

Figure 2.3: A Diverging Branch System Example

Table 2.1: The Return and the Transformation Function in the System.

Stage Decision Return Transformation Constraints
1 d r, =a’ - d, e [d., d.]
1 1 1 1 -i’ 71
2 = -
2 d2 T, + d2 Xy x, + d2 x, € [5i' xi]
2 -
3 d3 r3 d3 x2 X, + d3 -
x21 = x3 + d3 -
11 d . r.. =d, 2 - d,, e [d d, .1l
11 11 11 il =il1’ “il
2 _ -
21 491 T = X117 %Xy Yy Xy €Iy %]
2
4 db Ly = d& X3 =%, + d4 -
5 d =d 2 X, = x, + -
5 fs = 95 4 " X T Xg

*Qi(ai), 31(;1)’ gil(ail), and 511(;11) represent the lower bound (upper bound) of

each correspondirg variable.

21

e v B T UV T

k.

..

PASS

TN B S e

In this system, the stages 11 to 21 and 1 to 2 can be optimized using usual

ll recursive procedures as two disjoint serjial systems.
l At stage 11 and the diverging branch, we have
l B1p(qy) = max 4y

l' 91

and the optimal decision is found to be

ll dyy (%) =4y
1 Also, at stage 21, we see that
l dyy (xpp) = dy;
- . _ =2 - 2
with f21(x21) = d21 + d21 .

For stages 1 and 2 of the main serial process, the optimal decision and the

value of fz(xz)'are given by

dl(xl) = d1
d;(x;) = d,
2 2
with f,(x)) =d;" + 4,

Now, at stage 3 the two optimal returns f21(x21) and f2(x2) arecombined with the

stage 3 return as follows:

2 -2 - 2 -2 =2
f3(x3) = max [d3 + (dil + d21)+ (d1 + d2)] 2
d3 1
We again observe that
dg(x3) = dg))
<2 =2 =2 = -
with f3(x3) = d1 + d2 + d3 + d11 + d21

The optimization of the remaining stages, from stage 4 to 5, can also be

carried out recursively.

We finally have the following optimal return function at stage 5.

5 2
-2 -2
f(x) = £ d.°+ & @
LA O T ¢

22

PEST L e

The optimal solution can be summarized as follows (Table 2.2)

Table 2.2: Optimal Solution to the System Posed in the Example

Optimal Input Optimal Decision Optimal Return

2
4

ol W e W 3T

g

3:,'
i
£
£
T
¢
3
¥
i

We will now solve the diverging branch system defined in Table 2.2 and

Table 2.1 using the computer algorithm given im Section 2.2.

Some constraints on the input and the decision variables are added as

in the following problem.

TR e T T F TP -~

A e LR D)

N~

e e b e ettt skt < e i< . T

ous—
cn——

The return and decision tables at each stage for each input are

shown in the computer output attached (See Table 2.3). The optimal innut,
decision,and return at each stage are also shown in the output.

2.4 Analysis of the Diverging Branch System

In Section 2.1, we had assumed that the input and decision variables at

each stage had the following integer values:

oot omy owe on SN EN N EN

i 1 f'xil < Kil i=1,2, ..., M {
: i
1 < xg g_Ki i=1,2, ..., N :
lgdilgPﬂ i=1,2, ..., M 5
lidi:-Pi i=1,2, ..., N g

Let K = max (Kll"°" KMl; Kl’ oo KN)

Now, we will discuss the effects on the storage and the computer time

T ryw ow=r—

% i P,

of our algorithm.
First, let us define the storage requirement of the diverging branch algorithm
as a function of K, as follows:
0(K) = M+ N+ 3) K

The above storage requirement can be easily verified from the algorithm [16]-

2.4.1) Sensitivity to N

Let us assume that the maximum value K remains unchanged with the increase of

. the number of stages N, in the main serial process. The storage requirement

in this case increases by K with each additional increase in the number of N.

EEETTL

Moreover, the requirement O(K) is approximately proportional to N if the number

of stages in a diverging branch, M is relatively small.

N N N NN

P~V e—aerty

Table 2.4 shows the computational results of the example in Section 2.3

with the increasing number of stages.

“ |

-

’
4,

—
-

-

(avyne o

PR 2

GUOTSEOO(C pue cuinjog ose3g

B e el RS s SR U

surnoys Indang ad3nduo)

. - [~y Eo ————
——— — — l. .l. r .nl ...,.»l« ,,r

A L RN I TN L

25

‘€°C o1qey

|

e S e

Table 2.4: Computer Storage Requirements of the Diverging Branch Problem

Number of Stages Storage Requirement CPU Time
N 0(K) (Seconds)

5 200 .279

10 300 .371

15 400 .480

As shown in the above table, both the storage requirement and the CPU time

secem to increase linearly with the increase of N.

2.4.2) Sensitivity to the Complexity of Branches

When the number of diverging branches increases, the storage requirement
is not so simple as in the previous case. Consider a multi-diverging branch
system in Fig. 2.4 where the number of branches is D and each branch has
Mi,i =1, 2,..., D stages. Whenever a diverging branch is added, the branch needs
storage both for the branch return and for the optimal decision at each stage of
the branch, hence, the storage requirement increases by (Mi +1)K,i=1, 2,..., D.

Thus, the total storage requirement for the D different diverging branches can be

represented as follows:
D
O(K) = (Z (M, +1) + N+ 2) K.
i=1 1

2.4.3) Sensitivity to the Complexity of Transition Functionms.

When the transition functions to tml’ and tsl can be represented as a simple
linear combination of stage input X (or xml) and decision dn (or dml)’ the storage
requirement is not complex. However, if a system requires a tramnsition function

which has nonlinear term of xn or dn’ the storage problem becomes serious.

26

‘\
{
;

R T R e

% S N LA

P entd - Lo e N R a3 o Sy 1 iy T A st AR e

s e R SRRt

.fu.i L e T

wo3sAg yourvag wcnﬂnoﬁwolﬁuﬁ_z V :y-z oandyg
QHH a‘ @ 3
T \o’“{f N ry H
Qox.llﬂﬁal on a‘anj" a nzx o
a‘a 3
' ‘ at j o
A zen, P P ;
Yoo o et
i
w 4
A ‘TN ~ >
P (A b ~ .
T < a N
1 S; S, %mu 1
y o] 1 1, q o1 st Cs I ot N ”
X X X
1 T r4
P %p % Sp %
\§ s
.:g T ._”7..- -
E. .ﬂ Q..‘ Ha .H m
._”ox 1 X T :x i

Consider the example in Section 2.3 if the transition function is given by

t (x ,d) =x 2 +d form=1, 2, ..., 5.
s ntn n n

o
then, K = max Ki’ 1 <1i <35 becomes a huge number in an unconstrained problem.

As a result, the computational time will be increased dramatically.

2.4,4) Sensitivity to the Complexity of Return Functions

Provided that we use a function of xn and dn for the return at each stage,

;»uf-l!L”".-';‘4ll.t~—4|llt__‘llit__‘|||t_-‘..‘;- , . | -

the complexity of return function does not affect the storage requirement of this

TN

algorithm. This is because the sto.age requirement is strictly a function of i

K, N and M_.
i

e g e

-

€

-

R L

28

1

|
IF]
Ji
,; |
B

v

S S

- s

. .
B .o

|

|-«
.

.- . c-
. ¢

’ ’

N

o}
:

2

'

Chapter 3

ANALYSIS OF CONVERGING BRANCH NONSERIAL NETWORKS

3.1 Development of a DP Algorithm for the Converging Branch System

Let us direct our attention to the converse of the diverging branch system,
namely a converging branch nonserial network. 1In its simplest form, a number of
parallel serial systems join together at a junction node and then feed their
outputs to a serial system. A simple example consisting of two input parallel
branches and one serial output is exhibited in Fig. 3.1.

For analysis and algorithm development, consider this structure as a main
serial systemn, = 1, 2, ..., N and a branch =, =1, 2, ..., M. The convergence
occurs at node (stage) S. The transformation at this stage may be written as:

X = t.(x

s-1 s‘¥o1° *

s’ dS)

The transition function for the other stages may be represented as in the usual
serial processes as follows:
For the Branches

(x

xm--l,l Col ml’ dml

For the Main

]
L}

n-1 tn(xn, dn) . n=1, 2, ..., N

n#Ss

We define the returns for each stage similarly. Thus,

ry = rs(x01, Xg» ds)
r = rn(xn, dn) ,n =1, 2, ..., N, n#S
r1- :ml(xml’ dml) ,m=1,2, ..., M

To develop the algoritha, we proceed as follows. We first decompose the system
into three compunents corresponding to stages 11, 21 to Ml, and 1 to N. For stages
1 to N, we separately consider stages 1 to S - 1, S, and finally S + 1 to N. To find

the optimal branch return 511(x01) wve will use the backward recursion. Next we will

29

R

- S, B, S,

WD PP -5\ Svew T B L ol LR S 4

maximize fMl(XOI) over Xy The recursion equations for the different phases
may then be defined as follows: (Section 3.1.1)
41 4y
h 4
Vel R R R U AU S U T B S Xo1
ey, v L
M1 11
dg41 4 F
dN d
! [F
} 3
4
XN N }Sl-l oy .XS+19 S+1 XS S XS—l . xl 1 X0
T PR T
r r
T S+1 S I

Figure 3.1: A Convergiug Branch System !

3.1.1) For Stage 11 |
We solve the problem

) = max rll(xll’ dll)

1ody;, Py

o1 = t11¢

£11%11° *o1

d..)

s.t. X Xll, 11

In other words, for each input value Xy we will find the optimal decision dll

|
which satisfies X9y = tll(xll’ dll) and also maximizes the stage return. For each !
value of (xll, x01), the optimal decision d11 and optimal return rll are saved. :

)

3.1.2) For Stages 21 to Ml

The optimal return is given by

fml(xml’ x01) = max [rml(xml’ dml) + fm-l,l(tml(xml’ dml))]
< <
1 —'dml - Pml
where m=2, ..., M
30

i

-~

At each stage from 21 to 1, the optimal decision dm and optimal return

1
). At stage M1, fMl(Xypo xOl) is

[A

f are computed for each pair of (xml, X

ml 01

found and the value of X which maximizes the branch return for each value
P’y

P ey e

of x01 is obtained.

3.1.3) For the Mairn Serial Process

3.1.3-i) The optimal return from stages 1 to S -1lcan be found by using the

usual recursive procedure, i.e.,

sy T T)

:E fl(xl) = max rl(xl, dl)
1= dl < Pl g
£ (x) =max [r (x ,d)+ £ (c (x,d)] %

l1<d <P

=]
[
IR ITR A

where n=2,3,..., S$-1
3.1.5-ii) At Stage S (the junction node)
The optimal branch return fMl(le’ x01) is combined with the
return at stage S and the optimal return from stagesl through S ~ 1 using the recursion

equation

fs(xs) = max [rs(x01, Xgs ds) + fS-l(tS(xOl’ X dS))

+ f (R ¥gp)]

where the maximization is over 1 2 X f-kOl and 1 < dS f-pS. In other words,

at junction S, we compute the optimal return fs(xs) and determine optimal branch

output xOl’ and optimal decision ds, for each input value of Xge We can also

obtain the optimal branch input le which maximizes the branch return using the

value of xOl'

3.1.3-1ii) For Stage S + 1 to N

e S

v BN N Bt e A A

The recursion equation is given by
= 4
F(x) = max [r (x, d) + £y) (e olxy, 4))]
lsd¢s PX

where n=S+1,..., N ; ?
31 ;

!
i
1
\
|
i
|

]
Biinsavies o st s i AR 4 3 0

P POV

PR IE—— e

i
g
|
i
|
|
!

|
!
|
I
é

NN Em BN ~4-:.__4-‘_¢-a_.-ﬁ--t—--

d

N

At the final stage N the optimal system return for each input value of xn can
be obtained.

3.1.4) Determination of the Optimal Decision and Return at Each Stage

At the final stage, the optimal inputx; can be obtained which maximizes
fN(xN) with the optimal decision d; obtained from the.decision table. We will
proceed from stage N - 1 to stage S + 1. At stage S, the optimal input x; and
optimal branch input XOI are found as follows:

*
Xg = toy (Xgyy 5 dgyy)

* *
Now that Xg has been found, the optimal branch input Xg, can be obtained. This is

because we decided optimal x for each value of Xg when evaluating the optimal

ol

objective function value at stage S. For the remaining stages the optimal stage

input and decision can be obtained using,the stage transformation function:

X, = (x

N tN+1), N =$S -1,8-2, ..., 1

N+1’ dN+l

and the decision table, respectively.

3.1.5) Input Data Required for the Algorithm

The algorithm, zkin to that developed for the diverging branch system, is

designed to receive the following input specifications in Fortran:

N = # of stages in the main serial process

M = # of stages in the converging branch

S = junction stage

Kil = uypperbound of the input value Xiy0 i=1,2, ..., M

Ki = ypperbound of the input value Xgs i=1,2, ..., N

Pil = upperbound of the decision value dil’ i=1,2, ..., M
Pi = upperbound of the decision value di’ 1, 2, ..., N

3.1.6) Output List of the Algorithm

At the completion of the operations, unless otherwise specified, the algorithrm
outputs the following:

32

e

L v,

RO ot e .

oV~

Ty ey

Py

- O ag—

1. Return and decision table for each pair of (xml’ xOl)’ m=1, 2, ..., M

and branch return for each value of x...

2. Optimal branch input X091 01

3. Decision table for main serial process.

4. Optimal branch output x for each value of junction input x

1 S

5. Optimal input, decision and return at each stage.

3.2 The Algorithm, Flowchart, and Structure

As is evident from the analysis of the foregoing section, the computational

schema for the converging branch system differs from that developed for the diverging

branch system. The flow chart for the converging branch system is given in Fig. 3.2.
Although there are similarities in the logic of the flow charts, major differences
occur in the optimization procedure as well as the difficulty of performing the

optimization.

9. Yo PTOAWL, LT I DRl W T3TE o N

Comparing Figs. 2.2 and 3.2, we notice that the first major difference arises

in section A where instead of storing the optimal return and decision at stage Ml,:

a vector optimization involving two state variables X1 and X01 is performed in the i

converging branch case. The differences surface again in the computation of :

fn+Ml(xn)' From then on, the charts follow basically the same procedure.

3.3 An Example Involving the Converging Branch Algorithm ’

o tenhiard

Let us now demonstrate the use of the algorithm developed in section 3.1 in

the solution of a converging system problem. Suppose it is desired to find the

policy which maximizes the sum of the stage returns as a function of the inputs Xg ;
' and X1 for the problem with the structure depicted in Fig. 3.3 using the data of i

Table 3.1. In this problenm, Fhe serial component consists of stages 1 through 5

while the converging branch consists of 11 and 21 with convergence occurring at

node 3.

33

T vl e o

T e s . O e . - — S e cerpp———_—

Fig. 3.2: Flow Chart of the Converging Branch Algorithm

3

Read the input data

N = # of stages in main serial process
M = # of stages in a converging branch
S = stage to which a branch converges

Pml(Pn) = {# of levels of the decision at stage ml(n)
Kml(Km) = §# of levels of the input at stage ml(n)

I

e,

g

Define the transition and return functions
tn’ rn, forn=1, 2,..., N

t form=1,2,..., M

ml® ‘ml’

i Wy e
- e [} a——

fml(xml’ X

i
o
Y
¥
§
B
4
¢
3
§
3

or) = max [rp, (xys dpy)) o1 (Rpy» Xgp) = max [, (e d)
< <
dml Pml
*o1 ™ tm1 1 Gp?) (1S%m1iPm tf

Y v

o
~
| l

m—l,l(tml(xml' dml))]

adie L .,

; |
3 | ‘- ine x ¥ |
Determine le for each x01 such that i
:‘ . _ -
| il iy (s %gy) = max By (xygs %) p :
| 1<% €Py |
%' N
i :
i
U]
r ! I Yes No
. M
L s.
! l » ;
:
] f :
l : A fn(xn) = max rn(xn, dn) n(xn) = max [rn(kn, dn) + fn_l(tn(xn. dn))] :
1< d <P 1 <4d <P i
I n n n n o
| T | %
l No h
- n=n-+1 ﬁ* :
l.
,’
H
"‘ n=n+1
I ¥
= b [
' fn+Ml(xn) max g Xgy» Xp» dn) + fn-l(tn(xn’ dn) * v (ko x01)]
1 S X5 Koy
l) l<x <4d
i n
ll n = -n + 1
l fn+bll(xn) = max [rn(xn, dn) + fn-1+Ml(tn(xn’ dn))] |
1< dn SPn |

T Ny g b PR T e

[___ % [Y [¥ — — [~ 8 oo— —— —— —

. »

4 '

.- . '

POy
M .

o
Y .

Prmm— [SSSe
.) .

*
Determine the optimal input Xy such that
I\

*
f (xN) ={max f

N1 Gy}

N+M1

1<xy <K

*
And find the optimal decision dN

Compute the optimal input, decision and return
at each stage from N - 1 down to 1 and from
M1l down to 11 as follows:

* _ % %
Xn-1" tn(xn’ dn)
* (*
n = Tat¥n? n)
* (* x gk
X 1 ts Xgs x01, S)
* (x % %
rg = rolxys xgs ds)

* B (* ok
*p-1,1 = 1 pre dmt?
* _ (* gk
Tm-1,1 Tm1‘¥m’ ml)

v

Print Results

Vo
.

B 1o N vt 0

R WIS TP T AT

= 2, Ry~ W

T i A S -

Figure 3.3: A Converging Branch System Exanmple

Table 3.1: The Return and Transformation Function in the Svstem

Decision Return Transformation Constraints

|
;
i

N - -
éi’ §i’ éil and 511 represent the lowerbound of each variable and di’ xi, dil’

and ;il represent the upperbound.

VPPt Ee——

homd —d i B

R Nt i AR TTOIND ALt W 07 A A B B

¢ '1
R
I-I
lI
lI
l[
(
'[
§

e b b 2 s g - e meastasl

We will first begin with the branch system and determine £

21%21° *o1)-
At stage 11,
= 2
F20(qp0 %op) = max dyg
d11
S.t. Xg) T Xt
Substituting the constraint into the recursion equation, we have
2
£11G910 %)) = (g - %pp)
At stage 2, the recursion equation is given by
= 2 - - 2
£21(xp10 Xgp) = maxldyf + (xpy = %y = dy)7]
d21

Since f21(x21, xOl) is a convex function of the decision variable d21, it is easy

to see that the optimal decision variable with the value of f21(x21, x01) is

given by
dpy (g9 Xgp) = dyy
d.(y =232+ 2 yd,, + (x)2
21%21° *o1’ T %41 217 For’ Y217 a1 T *m1

Now, the main serial system through stage 2 is optimized in the usual

way to obtain f2(x2)' At stage 1, we have

. 2
fl(xl) = max dl

and the optimal decision is given by
dl(xl) = dl'
By proceeding as at stage 1, we have

dz(xz) = d2
-2 -2
fz(xz) = dl + d2

At stage 3, the branch return is combined with the serial return from

stage 1 to stage 2 using the recursion equation

2 -2 2 =2 -
= t -
f3+21(x3, x21) max[d3 + (d1 + d2) + ,2d21 + 2(x21 x01) d21
2

, -

+ {xg ~ ¥ H

where the maximization is taken over x01 and d3. :

38

|
H
y
#
:
¢
1
§
¥
|3

g vpere—rry

P S e~y Sy

~

-

*

-y -

H

The optimal value of X1 is found to be

x01 (%30 %51 = Xgp
with d3(x3, x21) =d

3
and f (x,, X,,) =d 2 +d 2 +d 2 +2d4.2 4+ 2(x.. - %)5 +
342173 T21 1 2 3 21 21 017721
(x,, - %)2
21 01

Having combined the branch optimally with the main serial systems we accomplish
the analysis of stage 4 and 5 with the standard backward recursion. Then we

finally have

d,(x,) =d,

ds(x) = dg

£ ()=§32+232+2(S S S £
5+21%%50 *21’ T 0 Sy 21 ¥21 7 For’%21 Y Y1 T *m

Retracing our analysis, we find the remainder of the optimal solution, which

is summarized in Table 3.2 as follows:

Table 3.2: Optimal Solution to the System

Optimal Optimal Optimal
Stage Input Decision Return
1 X =X+ xy ¢ 32 + 33 + 54 + 85 + 511 + 521 d, = 51 r) = 312
2 x, =% gt x, + 53 + 34 + 35 + 511 + 321 d, = Ez r, = 522
3 Xy = Xg + 54 + 55 d3 = 53 Ty = 532
o = % * 8y +) - -
11 x, =x, +4, dp =4 Ty Efl
21 %21 dpy =4y Ty T 351
b ox, = xg *+dg 4, =4d, Ty T 342
> X3 d5 = 4y rg = &’ ?
4

T e

B e T P G e L i e ¢ At - : e e

Let us now solve the converging branch system defined in Fig. 3.3 and Table 3.1

using the computer algorithm given in Section 3.2. We will add some constraints

b el T AW s e -y

on the variables as in the following problem:

5 2
max I r + ¥ r

bond Gues o e 0NN UG AN

n=1 © m=1 ml
s.t. 1sd <3 n=1, 2,..., 5

1< dml <3 m=1,2 {
1 <x <30 n= 1, , 4 %
n t
1l <x_,<5 f
! t
1< X <10 m= 0, 1, 2 i
3

The computational results are shown in the computer output of Table 3.3. The last

table shows the optimal decision and return at each stage.

3.4 Analysis of the Converging Branch System :

Different from the diverging branch system the storage requirement of the ‘

converging branch system depends not only on the value K but on KOl and KS'

these are defined as follows

K = max (Kll, K21,..., KMl’ Kl,..., KN)

1< x5 = Kgp

and 1<% S Kg

The storage requirement for the process of main serial is (N + 2)K, (N x K) for

the decision value and (2 x K)for the stage return as discussed in the diverging

branch system. See Section 2.4. é

40

i
|

e —— - - e— - e a————
e s s e s e ————— . o W—— = erm

e oy

£°f '91d jo orduwexy jo anding i9indwo) :g°g 21qrl

V=t LU= BEL - AT~ O TRV~ R - RE = VRl L= PR LRV B BV~ OEV - LY OV Y- GEY -
AT AR R A AN SR A LA T SRV SRS R AR ol X S S R S AR S X TN A W TR SR AT RIS A SR P I Aoy e

.:¢2.¢ et ROV PO L= QU= 6V OBV = T E b R~ C - G PRV LR~ Q- A= GEV~ 6LV = 6LV
T SRR AR P R T A R A g ¢ DA T AR ol R B ol o R N e 1 IR L o e A A S 2R 11 D T X ek Y o TR Lot 7
tlTab~tact - 10k ¢:¢:.7.¢:.c:¢s.hﬁ¢i.::¢i.} V-t ORY - TR EEV = BV - SR~ e L=t QLY - S Y- G-
t0gY =t TaY—-*CEL-1£C bEy—t LV =t 9Cb = LOV - BEV - 6CV~ ORV -~ TRV~ CEV~ LoV = VRV~ LEV - DLV~ LV~ BEV~* 6LV~

VLS Ly 2T7aVL NOISIJAd

‘98 YRE COG P08 HOAOKIORACIOROIOR R AOK AR AOR R ACROR R AR AR R A AR AR RO AOR IO AR AR R o ARk ok AR AR R doOR A R & koK &

L8 LS B YOHE 08 BORAOKK AR AR K AR A A e AACR R AR AR AR AR SOIOR AR A KO KOR OR S OK Kt AR AR AR R N Aok R 2Ok Kook

‘v ' *L MY T .a: .on AR A N AR AOK AR AR K K A Al O R A sk AR AR R ACAOR SRR A ARRORK AR RO CROR F AR

M .n: ‘RE YLE YO8 Rtk RORACKORORSORK SO O ORI R A OISR AR S A GRoR Aol oK RokR okor &
o Vot wE R C9n COT OF SUOOGORICIGRR AR AR AR SRR R ARR A AAOR A R ACR AR R AR KR IOR R A&
*0C TE A WV /' LS R E YW COE RRRORRAROAOK R AR K AR RO RAOR RAK IR KRR A AR Rk fokkd kT
‘60T ‘O YOG e ‘e * e Yt YO58 KARANAORA A AR A AR MR OR AR AR A K ROk ROOR R R Ak Lk
ar ‘ot M ' e AN R 2 ot ChHE COE AR AR RO MK AR K AR KRR AR ACSORR S R R OR GR K
LT el 08 CTE el ‘L .:: .m..ﬂ. 08 AORdRA ROk AR R ORoK A RO R AR Al ok ok
91T /Y ‘4T 0 e 98 YOHE TOE KRR RAANARRAN AR KSR KA EK
(AR S ‘9T ‘0T ‘4T 08 ' 0 * g THE 0E RRERRERARKRERAGOORROR R K
‘1 0t LT BT 6T .cm LG .ma (YRR TS & 63 (¢ 9.8 4 ¥ T ¥ 3¢ $X¢ N
8T A MUA VA ‘8T 98 ‘8¢ ‘ac ‘O *%**xx%%w
ST ey T 91 LT ‘O *LE 8E 6L 0 ook
*TT ¢ ‘T BT 9T v .nm CRE Ye BE ted .or
AKKKKK 1T *eT ‘vi ‘ol M WA ‘v ¢ R SR A O ‘& b
RAKKKKKKKR® TY 3 BT VT .wv i A 0T '9E Ll {
KREKKEARERKKKAKKEK*TT *C1T €T ‘TE e e rad e
FAokGoRRRRRRRKR XK KA TT €T o TE e e nE e
RRRKRRANRAKRFAAR KKK Rt TT *4T 0T *TEOCEE e 'R

« 1T HOVAS LV JTIVL NO1SIJ3d.

R

I S

-~

o dilmmmer et * S s e e

e MAT e ok g Rl it R - b : i i 5 - W AN 7 bt s ‘ s
. IR It

Pt e oo o XY

panurIue) g 91qel

- *IHIL NOILNOJAXI SANODIS dJ L(LT1°T NSt A ce oL - |2 .
*009%¢ SI NMALTY IVHILAO 'TVIOL CLLPY - Of b~ 0O A ;

L5v- T

*0RE~ 04 205 1

00646V 0 508 c

0520~ 005 P r

SNMALIM SIJHd LNANI 3OVLS.
COFU-HLY - BLY- Lo = POV~ GO~ YEY - EaU- COV = TaY - ORU= Vb~ BV V- Lb b= PV U~ CU V- Sy YL~ EVV -~ YU~
SNOILIONM 04 HONVME WOMA TOX LAANI TTWWILAO.
' 005 008 005 005 ‘005 005
*0 *0 *0 *0 ‘0 *0 0 *0 ‘0 ‘0 'O ‘0 *0 Y *0 ‘0 *0 0 ‘0 Y
*O5 0% *0s 08 05 05 05 05 t0E 0% oG 08 0L 05 05 ‘05 tab Bb LV ‘oY

5530084 NIVH MO4 3TEVL NOISIOAT. _

*00LY~ ‘0 Brv-
*0TLY- ‘0 Yy
Y0l ‘0 Lyt~
COELY~ 0 8yt~
COvLy~ 0 by~
‘0Ll ‘0 05~
CO9Lb~ ‘0 {528
COLLY~ 0 AN
COBLY - ‘0 gL~
*06LY- ‘0 vav-
* 008y~ 0 Bub-
COTHY- 0 9o~
*OTOY- 0 L5~
*OLHY- ‘0 BaY-
*OvEy- ‘0 b5t -
L 05aY- "0 09y~
098U~ *0 T9v-
. *0LBY- 0 cov-
L 0B8Y- ‘0 £Pb-
*068Y~ 0 vt

SNMALAY INAINTI TOX .

«TOX HOVA MOA NUNLAYM 8 LOONI HINVMI TTUWNILAO.

L) m . . l L B b T b b b b 3

o 00 0 o i £ i

+ L]

e R R R R)

PR S

o

However, the storage problem for the converging branch is a little
complicated. It can be analyzed as in the following cases.

1. At each stage (11, 21,..., Ml) for each pair of input
to the stage and the branch output (x01), we deter-~

mine the decision value which optimizes the branch
return. Hence, the algorithm needs 2 X K X KO1

storage for computing the total branch return for

each pair of branch input X1 and branch output Xo1°
Another M X K X K01 storage is required for the

decision value at each stage. Therefore, it becones
(M+2) XK XK.

2. Storage requirements for the decision of optimum

branch input and branch return for each value of
ranch output x becomss 2 XK, ..

b utPut Xo1 o1

3. At junction stage S, we need to determine the optimal
value of the input from the converging branch for
each possible value of the input fro= stage S +1 to S.
This requirement becomes KS.

From the above analysis, the total storage requirement of the converging branch

algorithm can be represented as a function of K, K_ . z.ad KS as follows:

0:
0(K, K01’ KS) = (N + DK+ M+ 2)% KX K01 + 21(01 + l\s
If we assume the levels of the state variables X531 and xg to be equal to K, then

the above expression becomes
0(K) = 1+ 2) K2 + (¥ + 3)K
Next, we will discuss the effects of storage, and time for the following

cases.

3.4.1) Sensitivity to N

As shown in the function O(K), the storage requirement increases by K
as we increase one stage of the main serial process. This is the same as in

the diverging branch system.

43

%
|
|
;
|

S

R S

Table 3.4:

Hdwever, notice that the storage requirement in the converging branch

is highly affected by the number of stages in the branch.

2
each additional increase of M requires a storage of the order K .

This is because

The computational results with increasing number of N in the example

in Section 3.3 are suwmarized in the following table:

Computational Experience with the Converging Branch System

Number of Stages

N

5
10
15

Storage Requirements

3.4.2) Sensitivity to the Complexity of Branches

As discussed before, the storage requirement in a converging branch

system is highly affected by the number of stages in a converging branch.

Moreover, if the number of branches increases, the problem becomes really

serious.

at each stage.

e N N A A A N RN

———y

4

Consider the multi-converging branch system shown in Fig. 3.4, where the

number of converging branches is D and each branch has Mi’ is=

.., D stages

When a converging branch is added, the branch needs storage of the order of

(Mi + 2)K2 + 3K as analyzed before.

Hence, the storage requirement for the above multi-converging branch

system can be 0(K) = (I Mi + 2)K2 + (N + 2 + 3D)K.

3.4.3) Sensitivity to the Complexity of Transition Yunctions

As we have discussed in the diverging branch system,

transition function affects the levels of discretization of the input state

the complexity of

Hence, it directly affects the maximum number K on which the

v o

g e S

R S

P Y - . » f

Ve v

Yo

T VM

. . . .
..-. -. o

b -t B e R R N T e il ool bl e et b
*; o
- rETT B e,
=]
e
—
o — -
-
~F
x o
.
=
-
)4
. ss H
— — =
o) v - o~
LT~ > 2] o .
> S = £
wn [}
)
o
o~
— - u m v rl 2
— — — ~ o &
L] (4 - ' 2] xs =]
)
A 4
+ L B
. 4
o ; . :
> ~ < .mm
- ° U
. ? ﬁVﬂ
. (2]
. (&)
N ._.. vy
~ ot -
o pe
S ~] ; M, =
° = W = &
- -
- — a
- — o
& =] i ~ -
o o e
~
L] [
i r
= &
4 o
ol =
>
P [[=]
1 - (o] d
| » a
Vs o g a "
= =
o = P

e S

e . 5

.:.Ix.ll.l...r.n.nu

,.lll 4llll~—-4|llt-4

ot . bt e A o B o b

‘- ‘- o- n-

.-. ‘. ‘-
A s A

)

=

1

storage requirements mainly depends.

3.4.4) Sensitivity to the Complexity of Return Functions

Again, the return function has no impact on the storage requirement and
computational time providing the algorithm employs a function in representing

the input variables X and decision dn.

3.5 A Modified Converging Branch Algorithm

The algorithm develuped in Section 3.1 and used to solve the sample problem
in Section 3.3 is somewhat restricted in the classes of problems it solves. To
use it in solving problems involving complex functions, especially with regards to
the transition and return functions, a modification was necessary. This led to the
development of the modified algorithm. Let us then illustrate the use of the modi-
fied converging branch algorithm with the following example problem. Suppose it
is desired to find the policy which minimizes the sum of the stage returns as a
function of the inputs X5 and X515 for the problem with the structure given in
Fig. 3.5 using the data given in Table 3.5. First notice the presence of fractional
numbers in the return functions for each stage. Since there are no stages after the

converging stage in the main serial system, we begin with the two stage branch system,

and determine f21(x21, x01). At stage 11

) = ot 2
fll(xll’ x01) = min 0.2 d11
dll
s.t. xOl = xl = d11
46

prurrm-acd

LB S e e

X 1 1
2 X
3 2 1
g b{::::

Figure 3.5 : A Converging Branch Svstem Example

Table 3.5 The Return and Transformation Functions with Constraints in the Svstem

Stage Decision Return Transformation Constraint

1 d r, = 0.1d 2 - d, = + x

1 199 1 %17 *o
- 2 - -

11 4 Ty =024y X1 T *11 " 91

21 d21 t2l = 375 - 10d21 x11 =Xy + d21 -

2 d2 rz = 600 - 100x2 + d2 x1 = x2 + d2 -

2
3 d3 T, 0.1 (50 - d3) X, = X, + d3

. 4 k;!‘;‘»_-u

T

El

¥
R T

i

Substituting the constraint into the recursion equation,we have

_ 2
£11(yp0 %g) = 0:2 & - %))
At stage 21, we see that
- 2
f21(x21, x01) = 3%n {375 - 10d21 + 0.2 (x21 + d21 - X5)}
21 -

>

Differentiating the term in brackets with respect to d21 and setting the

derivative to zero yields

Yy =25 +x%x,., - x

d o1

21%21° %01 21

and f21(x21, xOl) = 250 - leOl + 10x21

...lf

Now, at stage 1 the optimal branch return is absorbed. Thus,

. 2
(xl, x21) = min [0.1 4,° + 250 - 10x., + 10x

£ 1 01 21]

1+21

ot e e
...ll
.

X010 4

*

s.t. dl = xl + xo1

Substituting the constraint into the foregoing recursion equation, we obtain

2
f1+21(x1, x21) min [0.1(x1 + x01) 4+ 250 - 10x01 + 10x21]

X

.
-

-

01

The optimal value of X4 is readily found to be

-4
v

i X1 (%p» Xgp) = 30 - %
1 with dl(xl’ x21) = 50
and f1+21(xl, x21) = 10(xl + x21)

At stage 2, we have

= :in (600 - 100x2 + dz + 10(x2 + d2 + x21)]
2

£r421 (X2 %9)

The optimal value of d2 in the above recursion equation is independent of the
stage inputs X, and Xp1° So,if we assume the feasible region of dz as

d2 £ [gz, dZ]

48

——
————nd
]

I
1
V
1
i
1
]

EE R R DS DD EE = = - — — — —

et e it

rotiad

then, wé have the optimal value of d

5 3s
d; =4y
and f2+21(x2, x21) = 600 + llc_l2 = 90x2 + 10x21

Finally at stage 3, the recursion equation becomes

- 2
£3491 (X3> Xp) = min [0.1 (50 -)% + 600 + 11d,- 90 (x, + d)

d3 + 10x21]

It is easy to see that d, = 500 is the solution with

3

) = 24150 + d, - 90x; + 10x,..

2 21

Retracing our analysis, we find the remainder of the optimal solution

£3401 (%30 Xy

which is summarized as follows:

Table 3.6: Optimal Solution to the System of Fig. 3.5 and Table 3.5

Stage Optimal Input Optimal Decision Optimal Return
1 X = X4 + 500 + 92 dl = 50 250
Xgy = X3 = 300 - 22 - -
11 X1 % %3 - 425 = 92 d11 = 25 125
21 Xy d21 = X3 = Xy 425 - §2 10x3+ 10x21 + 4625 + 1051_2
2 Xy = X4 + 500 d2 = 92 —100x3 = 49400 - 92
3 x, d3 = 500 20252

Let us next solve the same problem described in Table 3.5 with the following
constraints added to the input and decision variables at each stage

3 2
min L rn + I
n=1 m=1l

s.t. 491 < X < 510
4915 x, <510

rtnl

2

: i
:

PSSt~ S re ety

' l
!
'
o
3

x355

x01 < 445

xll < =420

0 X5 <5
41 d1 < 60
0 d2 <5
11 d3 < 30
11 d11 < 30

-439 d21 < =420

*n? *m1’ dn’ dml €T, ; i: g’ 3
where T is the set of constraints in Table 3.5. Notice that this is akin to the
problem solved earlier in that the objective function is similar. However, the
stage return functions are different. The solution is effected using a modifi-
cation of the algorithm developed earlier. The computational result is shown
with the computer output in Table 3.7 . Note also that from Table 3.5, the total
optimal return of the system in Fig. 3.5 becomes A

10x21 - 9Ox3 + 11g2

With the constraints given in the above problem, the optimal solution is obtained

= 23150.

when

x,, = 0, =5, and 4, = 0.

21 *3 2

Further, note that in the computer output the problem was solved by changing

the minimization of the objective function to the maximization of the total return.
The computational efficiency of our converging branch algorithm is measured

with the problem by changing the number of discretizations of the variables.

The problem above was solved Qith six discretizations in the variables

321. x3 and d2 and 20 discretizations for all other variables.

e i B A

e e ST 5 amn P R a . - e e

Table 3.7: Computer Qutput of Constrained Example Problem l ,

. N vy P [N O V] [i
l [T . 1 . Ly Iy (W]). O [N
‘I I R ey
} H
it g L I [.

}
i
.
i
i
i
-~

: LA t L ! [¥) : Vi oa
. 5 (1 H i : r. I
i : Vi : A ¥
. 1 i [4 [N 1
.
: i [g (1. i
i - .- -
1 K f . O 0y, [3] i
' [] [[N v Ve i o
; : T i . ¥ it oL O i i.
P ; - i) & . o
Ry s (1 Uy . (R N N
e .
! [v o
. v : . .
"l |"l l"'; E i H

P g st D e

Loy

o v

51

- rersre e e e m

|

. - o ————— e e e pp———_

.

-

4

Table 3.8 shows the storage requirement and the computational time for
different combinations of discretizations. We see that the computational storage
requirement is clearly affected by the number of discretizations of the branch

output variable Xgyp 28 well as the other variables.

Table 3.8 Computational Storage Requirement and CPU Time for the Converging
Branch System

Number of Number of discretizations of x

discretizations 01

of all others 5 10 15 20
20 5,712 (.709) 10,322 (.989) 14,932 (1,313) 19,542 (1.674)
30 5,852 (1.077) 10,562 (1.834) 14,292 (2.484) 19,982 (3.219)
40 5,992 (1,729) 10,802 (2.913) 15,612 (4.077) 20,422 (5.201)

* Numbers in the () represent the CPU times (seconds)
* The storage requirement is measured with the number of elements in the arrays.
actually used.

3.6 Computational Efficiency of the Converging Branch Algorithm

The computer program of the converging branch algorithm is modified so that
any integer values are permitted for input and decisiou variables at each stage in the
system,

Assuming that the.input (xi, xil) and decision variables (di’ dil) at each stage

have their lower and upper bounds such that

ziixii% i=1,2, ..., N
24, <d; <ud, 1i=1,2, ..., N
211 < xgp Sy i=1, 2, ..., M
Bd,, <d; <udy) 1=1,2, coup M
Lo1 < %1 2 Y

then the computational storage requirement can be analyzed as follows:

52

e S T T e e g ——

i VY. SIONE. NPHPCS

LA

Aoz

The main storage requirement in the converging branch algorithm is for the

decision tables and the return tables. Since the decision table for the main
serial process is constructed at each stage, the computational storage depends
only on the number of discretizations of each decision variables. Hence, the decision
table for the main serial process has the following storage requiremnent:
(Number of stages in the main serial process) multiplyed by (maximum
number of discretizations of the input variables in the main serial
process) = N X max (ui - Ei + 1)

1<ic<N

fA

The amount needed for the branch system is a little complex. Since at each
stage of the branch, the transformation function has to satisfy the constraint
given by the branch output (i.e, 201 < X5 5-”01) the storage requirement for the
decision table becomes '

Number of stages in the branch) multiplved by Maximum number of

discretizations of the input in the branch) multiplied by Number

of discretizations of x01) = M X max (uil - 111 +1) X (uol - 201 + 1)

1 <ic<M
Another major source of storage requirement is due to the return table. Since
the system is solved using a backward recursion equation, we need to revise the
return at each stage with respect to the reﬁurn at the previous stage. Hence, the
storage requirement for the return table at the main serial process becones

2 X {[max ui] - [min £i + 1)}
l<ixc<\XN 1 <i<\N
Similarly, the computational storage of the return table for the branch system

is given by

2 X {[max u

11] - {min 511 + 1]} X (uo1 -2.. +1)

01

i i

TN G i A OIS s e, b e -
" v N,

— m

Notice that the storage requirement of the return tables are largely dependent
on the size of the input variables each of which is a function of the decision
variable and input at the previous stage.

To illustrate the computational requirement of the converging branch system,
we solved a set of problems with different numbers of stages both in the main i
serial process and in the branch. Table 3.9 shows the storage requirement and

computational time for each case. In each case, a set of simple transformations

v and return functions at each stage was generated. Five discretizations for the

branch output variable Xo1 and ten for other variables were used. The lower~

bounds of all decision variables were assumed to be zero, and a reasonable

lowerbound for each input variable was given.

‘ We can see that the storage anua the CPU time increase are very sensitive to

the number of stages in the branch system.

.

Table 3.9: Storage Requirement and CPU Times for Different Number of Stages
N =Number of stages M = Number of Stages in the Branch
in the serial process 2 3 %
5 470 (.411) 620 (.442) 770 (.566)
10 620 (.448) 770 (.499) 920 (.582)
} 15 770 (.474) 920 (.525) 1070 (.605)

* Numbers in () represent the CPU times in seconds.
* The storage requirement is measured with the number of elements in the arrays.

~apr:

-

L&l

e

T ot M hdbe = o

POTEIEIER®

e e W A e S < S s S 0 M o

D

- = - e - e = AN,
L] .
. .
Loy Bt [Ty ¢t T
Ca . < X
DR it o f
. : d
- [y S S R t 23 ! al
" . o v " " a P € “
) ‘ —-—— - - [-]
- AR S B o"‘n.
L} > ‘.
(R34 ' ' | L} R ! iy AR 43 ut £ At n“M
) E
LA TR TR L AR D LR B I (24090 33 d“
2
||||| Pm
e+ e e e —_— a
o o —Rb
v &
. e
o 2
-y “
[[
Y] r
“a . ”
T A - ﬁy—
" Y \
(R IR el LIPS Y LIRS
alird pE [SN R FLTER N K RTEIS R LAy
3 L3 LY vy . £ A A

PR T p—r—

LATR N W

g, S o et Bn . somrd s

1
¢
;
' .
vt ! . ».
-
. TR 1
i t 1
{ - PRI et o 1 I3
oo DY i . 1
~_ » -l. . + k2 “
L4 o M “h A
oo, s . .
. + 3
£
E RS SRR (¥ BUDLL SR
- - © K
L)
! ot 0! tal o 1 ¥ ! ' ? et ved (SR DO} (SN (I R LN BERE B R K
~ v by 1 \ e ! PR | ' ot o { ! P) 0l v o< ! [IR=RN E
o
L oy Wiy g et LikAand [LEL SN WURKLR K
Y h v N x t =
! pa i o A . s o E ‘ ¥ ' TN TN N Y tL Ty TE Ty i Y [4
R "l M X : : | M i i Tx v Ty Yy B tx A 3 Ty Ty b [N A
e T T vyl T ¥ ' . . A R - ‘N s T Ty N 1 <
> ' i Loy NS L SRS A o i
’ ! b B [o | (AN | R bt LR 1 i [Ly 2 el E ! 1 v ¥ < t (R LU)
v Wt e R 2

T ———— e e ewm wwm e @y o e o= w® ' J

T A S A A I et v
" AT RO B3 S A« g, TR A 4% e i 47 1

- PR ———————

Chapter 4

ANALYSIS OF FEEDFORWARD LOOP SYSTEMS

4.1 The Basic Structure

A feedforward loop system is akin to the diverging branch system in
which the branch output feeds into the main serial éubsystem at state j.
Thus, it may be viewed as a simple combination of diverging and converging 1
systems. . The divergence occurs at stage k while the convergence takes place ﬁ

at node j, j < k. The basic structure is diagrammed in Fig. 4.1.

Let the transformations and returns which are the same as in the usual

serial ones for all stages other than j and k be defined as follows:
X = tn(xn’ dn)
rt = rn(xn: dn) , n=1, ..., N, n# 3

X

5=1 7 S5 %o Xy 4y

r, = r, (x.,, x., d.)
3 J(Ol i’ 73

-)
xe1,1 " Bt pre 9np) ;

(

rml = rml

Nn = G e &)

X1 dml) , m=1, ..., M

X, X X
w-1 k j+1 k|
k p| k-1 p e —p] 3t1 3 PR 1

Jiz”
E
J

Figure 4.1: A Feedforwvard Loop System

o

s
B
i
: ’
&3
A ¢
¢ - mm——

1

Elearly, this is a more difficult system to treat than any of the
systems discussed so far. A fundamental observation which supports this
viewpoint is the fact that the branch is both diverging and converging.
Thus, in nature the branch input Xy as well as the output X0y affects
the return from the serial system. As a consequence. of this important
fact, if the branch is optimized separately as a serial system, its
aptimal return must be determined as a function of both its input and out-
put. In effect, we have a two point boundary value problem. There are
thus at least two possible routes to the computational scheme. The optimal
branch return can be absorbed into the main serial system either at the
converging stage j or the diverging stage k. In either case, it must be
noted that a two state variable dynamic programming problem results for
the branch optimization. To minimize the computational burden, adroit
schema must be sought to reduce the vector optimization problems to that

of a series of one variable optimization problems.

4,2 The Optimization Procedure

Here, we will give a procedure which solves the feedforward loop
system in which the absorption of the branch occurs at stage k. Nemhauser [22]
describes both approaches but indicates why the absorption at the diverging
stage is the preferred procedure. In this procedure, there are essentially

two main steps involving the loop system and the main serial system.

4.2.1) Optimization of the Loop System (from stage 11 to Ml)

The branch consisting of stages 11 through Ml is optimized to find
fMl(le’ xOl)' This procedure is the same as the one in the converging

branch system treated earlier. Notice that this is a two state variable

dynamic program.

H .
H \

4.2.2) Optimization of the Main Serial System

‘ - The following five phases in the procedure may be considered.

4,2.2-1) For the stages from 1 to j = 1 (from node 1 to node preceding
the convergent node j)

The optimal return from stage 1 through j - 1 is obtained

by using the usual recursive procedure, i.e.,

fl(xl) = ?ax rl(xl, dl)
1

fn(xn) = gax [rn(xn, dn) + fn_l(tn(xn, dn))], n=2,..., -1
n

4.,2.2-1i1) For stages from j to k -~ 1 (from convergent node to node
proceeding divergent node k)

Since the absorption of the loop is assumed to occur at

stage k, the optimization of x,. is deferred to stage k.

0l

Hence, is carried as a state variable in stages j

*01
through k -~ 1, Let the optimal return be defined as

fj(xj, Xg1)
The resultant recursive equations are

= d
fj(xj, x51) 2ax [rj(xj, X5y dj) + fj_l(tj(xj, X5 j))]
3

and fn(xn, x01) = max [rn(xn, dn) + fn—l(tn(xn’ d“), x01)]

d
n

4.2.2-1ii) Optimization of %01 at stage % (absorption of divergent node)

At stage k, the optimal loop return fMl(xul’ x01)1s absorbed
into the main serial process and we have the following

recursion equation:

)

= max [rk(x

- d) * fe (g (s dds xgy
01> %

K’
+ £

£ (%)

1 B e 400 %py) !

At this stage, the optimal branch output xOl(xk) is
obtained as a function of the input variable xk, of the
stage k.

4.2.2-iv) For the stages from k + 1 through N (remainder of the serial
system) -

The recursion equation for stages k + 1 through N is given
as usual by

fn+Ml(xn) = gax [rn(xn’ dn) + fn—l+M1(tn(xn’ dn))]’

n n=kH1, ..., N

This concludes the optimization phases for the situation in which
absorption takes place at the divergent node. When it takes place at the
convergent node j, a different set of recursion equations is needed. 1In
general, the same number of computations is required in either case. The
main difference in the procedure results from the consideration of where X5y
is optimized. In the convergent node ahsorption variety, the optimization is
done earlier in the analysis with Xu1 being carried as a state variable from

stages j + 1 to k ~ 1 whereas x_ . 1s carried as a state variable during

01

similar periods when the optimization is done at the divergent node k as

just described.

Figure 4.2: Flow Chart for the Feedforward Loop System

r/// Read the input data

N = # of stages in the main serial process
M = # of stages in the loop
the converging stage of the loop
and the diverging stage of the loop
K (K) = discretization # of input at stage n(ml)

n ml

Pn(Pml) = discretization # of decision at stage n(ml)
BKn(BKml) = lower bound of input at state n(ml)
BPn(BPml) = lower bound of decision at stage n(ml)

'

Define the transition and return functions

t r

k1’ "ml’ ml

L, Ist
forn=1,2, ..., Nandm=1, 2, ..., M

l Yes \my No 1
m1Zp1® Xo1) nax o1 a1 9y £01(%py» *op) = nax [epn g 4 * £00 1
ml ml
s.t.oxgy =ty (x,s dy) (e (e 4y %gp))

' |

m=m+ 1 m = M

61

SR 1.

PO SIS {2 wsea? (N rogap Tr i

ey

I T — Y Py

Save loop return £ y X1)

w1 B * XoL

. No
\ ! }
fn(xn) B :ax rn(xn’ dn) ‘ fn(xn) = zax [rn(xn, dn) + fn—-l(tn(xn’ dn))]
n n
L 4
n) k
n=j #
l L B
. fj(xj, x01) = zax [rj(xj, X012 dj) + fj—l(tj(xj’ X500 dj))] !
li 3

N

n=n-+1

|

fn(xn, x01) = max [rn(xn, dn) + fn_l(tn(xn, dn), x01]

d
n

Yes

Een) = o [r (e 40 + £ (5 Gy) %))
k

+ i (G (ke 40 %)

= :ax [rn(xn’ dn) + fn—1+H1(tn’ *n? dn))]

fn+Ml(xn)

No

*
Determine the optimal system input xN such that
f

*
w1 (X)) = max f)

A'

*
And find the optimal decision dN

r-\r—..v—.v--wm—w-mg-m,—--— =
i
a

Compute the optimal input, decision, and return
at each stage from N - 1 down to 1 and from M1
down to 11 as follows:

x: = tn+1(xn+l’ d), n=N-1,...,1,n #3j-1
r:=rn(x:, d:;) n=N-1,...,1, 0#j
* x & %
51 = tj(x01’ xj, dj)
* * k%
rj = rj(x01, Xj’ dj)
. %
SR O R
* * *
X" tm+1,l(xm+1,1’ dm+1,l)’ m=M-1,...,1, 0 '
% * * !
ra - rml(xml’ dml)’ m=M..., 1 . !

£ |

Print Output

4.3 An Example of the Feedforward Loop System

The flow chart for the numerical solution of the feedforward loop

system is shown in Figure 4.2.

To illustrate the algorithm, a computer

program was written and implemented using the test problem described in

Figure 4.3.

In the example, it is desired to maximize the sum of the

stage returns for the problem with the structure given in Figure 4.3 using

the data in Table 4.1.

the divergent stage is node 5.

31

31

In this example, the convergent stage is node 2 and

X x
21 21 11 11
Xy X,)

— 1

The loop contains nodes 31, 21, and 11.

01

X,

Figure 4.3: A Feedforward Loop System Example

Table 4.1: The Return and Transition Function for the Svstem of Fig. 4.3

Stage Decision Return Transition Constraints

1 dl r, =X + dl -

2 d2 T, =Xy, tx, d (x01 + xz)/2 +d,
11 ay £y =%t dli x td, 0Sx S15, f=l,..., 4
21 d21 Ty x21+ dzi x21 + d21 0 < xils 10, {=0, 1, 2, 3
A d31 £y = %apt dg) X33 Y d3; OSx5S 3

3 d3 Ty ™ X4 + d3 Xy + d3 0 < di <2, i=1,..., 5

4 d, r, = x, +d, x, +4d, 0$d,52, =1, 2, 3

5 d5 Tg = Xo + d5 X + dS

-— s oL
Dol e » A .,

Our problem can be formulated using the following mathematical form:
2
X

r
m=1 ml

n

2, 3

The computational results are shown in the computer output of
Table 4.2 The optimal decision and return at each stage are summarized in

Table 4.3.

DTN

'
(!

.

[
.

Table 4.2: Computer Qutput of Feedforward Loop Example

in Figure 4.3

DECISION TABLE AT STAGE 11

O, 1. RIFTFEITTLELTLSEF ST TSI SEEFTCEITITI LT ESESTETETETETFITEFS T o T
E 33 0. i, PR T EF T TSI ST LI FIESTEETTEFEET ST TP k‘**k#kk#*k%a&*”#*~¥
SUKFKKK 0. 1. 2 ERRKERR ARG R KRR AoR K CRORR ok ok kR Rk okiok 2k &
TR KRRk kK 0. 1. 2o KRR RRE KOO ROk Kok ook R KR KRRk Rk R Rk ok
kokkekRoksokserR ok koo 0. 1. 2 ko ook ook R R R ok R R ok Kook K
RkRRIckRcokokkdokksokiokk 0. 1. 2 Rkxksokokok Aok ook kR ook kok kk
FRRERACK AR R KRR KRR L RRRK O. 1. R SEF IS EI TR T ETEFEFEETEIFEE S S T3S
cksck ook ook koK R KR kK 0. 1. 2 kR ok dckok R R R Rk Rk kxR
JORACKACK KRR XA KA AR KK AR TR RRK KRR RKKK R K 0. 1. 2 kol folorekriok sk x
“R*Xx#****ﬁ*#k%*k*###k#%**k*#»*# RERKEKKRK 0. 1. 2 RERKHRRKLLR KKK
BACK KK RO KCKICIOR R IOR R IOR AR AR R R R R Rk dokkkk C. 1, 2 Rk RRK

. DECISION TABLE AT STAGE 21

0, 1. 2. 2, 2, 2, 2, 2, 2, 2 2. 2, 2, 2, 2.
2, 0. 1, 2, 2, 2. 2, 2. 2, 2 2, 2, 2, 2, 2,
2, 2. 0. 1. 2 2. 2. 2. 2. 2 2, 2. 2, 2, 2,
2, 2. 2, 0. 1, 2, 2, 2, 2. 2 2, 2. 2, 2. 2.
2 2. 2 2, 0. 1, 2, 2, 2. 2 2, " 2. 2, 2, 2,
2, 2 2. 2. 2. 0., 1, 2 2. 2, 2. 2. 2. 2. 2.
2, 2. 2, 2 2. 2 0. 1, 2, 2 2. 2. 2, 2. 2,
2, 2. 26 2 2. 2 2. O, 1. 2, 2. 2, 2. 2, 2.
2. 2, 2 2. 2. 2, 2, 2, O, i, 2, 2. 2. 2, 2.
2, 2, 2, 2. 2. 2, 24 2, 2, (LIS 1. 0O, 1. 2, 2.
2, 2 2, 2, 2, 2, 2, 2, 2, 2. 0. O, 0, 2. 2.
DECISION TABLE AT STAGE 31

O, 1, 2. 2. 2. 2, 2, 2, 2, 2, 2, 2, 2. 3. 2.
2, 0. 1. 2 2. 2, 2, 2, 2, 2, 2, 2, 2, 2 2,
2. 2. O, 1. 2, 2. 2, 2, 2, 2, 2, 2. 2, 2, 2,
2. 2 2 0, 1, 2, 2, 2, 2, 2, 2. 2. 2. 2, 2.
2, 2, 2, 2 G, 1. 2, 2, 2 2 2 2, 2, 2, 2.
2, 2, 2. 2, 2, 0. 1., 2, 2, 2, 2, 2. 2, 2, 2,
2, 2. 2, 2 2, 2, 0. 1. 2 2 2, 2. 2, 2, 2,
20 20 20 20 20 20 20 00 10 20 20 20 20 20 20
2, 2. 2. 2, 2, 2, 2 2, 0, 1. 2, 2, 2 2 2.
2. 2 2, 2, 2, 2. 2, 2. 2, 0, 1. 1. 1. 2 2.
?0 20 20 20 2v 20 : 20 2. 20 20 00 00 0. 20 20

Py

A R A N AT Y AN .29

o
[
3
c

Eed
o
c
o}
o

o~

<
Q

—
el
o
| o]

‘ECISION TABLE FOR MAIN SERIAL FROCESS®

* & o & o o & L d - &
IO I IS LT 422

& & 4 o & o o . & o

2 2 2 ﬂ. G C 0 04 0 o4 oY 2 IC B Y]

. e« o & o > & -

CICECICLCL 0 L O QIR & 0

« 4 & & @ > o & s s o e

CINCI I I NI O NI I Y

e ° - * & & &

2222222 222 22222

* & o

- L 4 L 4 L4
IS TR VR hnd 2 ﬂ~n.- 222.: ™

e & 6 & o o e e 2 o & =

CECECIICE QL I NI I I T

& a & o6 @ e b 4 & & &~ 3 &

Ld
CLCICICI I NI (L LTI 0

> o * o o

2 2 2 22 2 2 2 2 2 LN

* & & o . e . e
]

2 2 C4 Iy O 2 n._ 2 o 2 n e}

e« & o & »

¢ & 4+ & & s s+ -
IR e R Y e N B A A BT N R A B e

0,
O,
0.
0,
0,
0.
0.
0.
0.
0.
0,
0,
0.
0.
0.
0.
0.
0.

1,
1.
i.
1.
1.
1.
1,
1.
1,
1,
i,
1.
1.
1,
1,
1.
1.
1.

v - *
CLOICICICI I I I I S O O 4 O »n._ 2 n.._ 0 ¢4 0

LI I Y

’,0

2 CLCL OO O 04 O &
CLOICI IO I I N I L L

- * »> - * - > - Ll *» >
CIOII I I I I I I I I L I

d-.

2 2 2 2 2 2 2 27

A-)
L'
‘-O

5

AN 2 2 2 xR Ny Ny

0

L] - - - - - " > Ld
CLO{ IS CI I CI A L L O O YN r .J A ﬂa 1& a; HJ

|1
{
I Table 4.2 Continued
I 2, 2. 2, 2.
00 0’ 0' 0!
0. 0. C. 0,
, 0. 0. 0. 0.
0. 0. 0. 0.
] 0. 00 0. 0.
00 00 00 00
- 0. 0. 0. 0.
- OQ 0' 00 00
. O, 0. 0. 0.
»: Q. o, O, O,
0, O, O, 0.
. R O, O. 0,
. 0. O, O, O.
O. o, 0. 0,
i CQETIHAL LOOF QUTFUT FOR EALH INFUT VALUE®
l *0F THE DIVERGIMNG STAGE K°®
.- o) 8
1 i ? . .
|‘~ 2 10
i B 3 11
1 1
[
‘ '1. *STAGE INPUT DECIS RETURN®
g 5 3 2 5,
: !. 4 5 2 7.
i ' 3 7 2 9.
. 2 9 2 22,
1 12 2 14,
- 31 5 2 9,
. 23 7 2 11,
li 11 9 2 13,
- TOTeL OPTIHAL RETURIY IS 90,
) EQT, ¢ FILES., 1 RECS, 479 UWORDS,
/

T e e & e -

P P O U

Batreeqm misnie o

-

‘.

‘
¢
i.’
.
h

Optimal Input, Decision, and Return of the System in Fipure 4.3

Table 4.3.:
Stage Opt. Input Opt. Decision Opt. Return

5 3 2 5

4 5 2 7

3 7 2 9
31 5 2 9
21 7 2 11
11 9 2 13
"2 9 (11)* 2 22

1 12 2 14

* () represents the input from the feedforward loop

.

4.4 Analysis of the Feedforward Loop System

The storage requirement of the feedforward loop system can be

characterized by coﬁsidering the followiang two aspects:

1. The storage requirement for the loop system can be analyzed as

the converging branch system.
2. The storage requirement for the main serial system is much higher

than that for the diverging or converging branch system. This

is because X91 is carried as a state variable for stages j through

k - 1.

Now, let Ui’ li, Uil and 211 be defined as follows:

B s x s U i=1,2, ..., N

b08%,SU, 1=0,1, ..., M

Also, let Ki and Kil be respectively the number of discretization levels

for variables X and X4y and K and Kl be defined as follows:

70

Since the loop optimization must be treated as an initial-final value

problem as in the converging branch system, the storage requirement for the

loop system becomes

SRL = MK K. + 2 Koq (max L\)

1701 1 - min &y

i i 1
The first term MK1K01 of the above equation is the storage requirement for
the decision value for each pair‘of input and branch output values. The
second term is the storage requirement for the stage returns for each
possible pair of input variable X o1’ .

Now, the analysis of the main serial system of the loop structure is

and branch output x

different from the one for the converging branch system. In the converging

branch system, the branch return is combined at the converging stage S with

01 is

optimized as a function of Xg However, in the loop structure, x5 cannot

the returns from main serial process and then the branch output x

be optimized at the converging stage j, since all the recursive returns

from stage j to k -~ 1 are affected by the variable x

Hence, needs

01° *o1
to be carried as a state variable for stages j through k - 1. Thus, the

storage requirement for the main serial system becomes

SRMS = NKKO1 + 2 KOl (mix Ui - min ﬁi)

Thus, the total storage requirement for the loop structure becomes

TRSL = MK1K01 + 2 KOJ(mix u, - min 2)
+ NKKOl + 2 KOl (mz.xx Ui - min Q,i)
71

B

Ay b e e e

v
.y
: >

1

’

= max U, and min &,, = min %, then the above
i il i

If we assume Kl = K, max Uil
requirement becomes

= “+ = 1

TRSL = (M + N) KKy 2 Ky (max U; = min li)

4.5 Computational Experiments with the Loop System

In Table 4.4 we will iliustrate the computational requirement of the

feedforward loop system. We solved a set of problems with different numbers

of stages in the loop. For each problem zhe following input data were used.

N=35
K= Kl = 15
KOl = 10

max U, = 14
1
min Ki =0 .
As shown in the table, both the storage requivement and the CPU time can be

represented as a linear function of the number of stages in the loop.

Computer Storage Requirements for the Feedforward Loop System

Table 4.4:
Number of Stages Storage Requirements CPU Time
in the Loop (Seconds)
2 1350 . 602
3 1500 .694
4 1650 .748
5 1800 .875
72

[P CE

B AT

Chapter 5

ANALYSIS Oﬁ FEEDBACK LOOP SYSTEMS

5.1 The Basic Structure and Algorithm

- A feedback loop system is identical to a feedforward system except
N that the relative positions of stages j and k are reversed. In the feedback ;

loop system as shown in Figure 5.1, k < j, where k is the diverging stage

and j the converging stage. i
-

The transition and return functions for the feedback loop are identical

-
PV

to those of the feedforward loop with the numbering of the stages as shown

’ in Figure 5.1. :

The recursion equations for the feedback loops are a little different

S e et .,

because of the different positions of stages j and k. The optimization

procedures for the stages in the loop as well as those in the main serial

4
Erpratewry

process except stages j and k are the same as in the feedforward loop

s g

- systems. Hence, we will not give the detailed optimization procedures for the

. feedback loop systems. Instead, we will summarize the -~lgorithm in the flow

chart given in Figure 5.2.

g i. In the algorithm described in the flow chart, the optimal loop return |

5 - fMl(le’ x01) is combined with the main serial system at the diverging |

i - stage k, and stages k + 1 through j - 1 are optimized to give fj—l+M1(x’-1’ x01).

, 7‘ The branch output X531 is then optimized at the converging stage j. f
z.' The analysis of the feedback loop system is not given since the com- §
E: plexity of this system is identical to that of the feedforward loop structure

presented in section 4.4.

[EREpatnae—sgenpre

LY Hg T s

IRIEE. 2.)

'[; 73

s A A e ek oy A e BB ey R G A ¢ e

g
0
o
0
>y
"
[
o
0
|
2
3]
o
1
o
@
o
79
<

Figure 5.1:

Figure 5.2: Flow Chart for the Feedback Loop System

//////, Read the input data

of stages in the main serial process N
of stages in the loop

converging stage of the loop

diverging stage of the loop

Kn(Kml) = discretization # of input at stage n(ml)

+
2
()

'
[}

P (P _.) = discretization # of decision at stage n(ml)

. n' ml

. BKn(BKml) = lower bound of input at stage n(ml)

. BPn(BPml) = lower bound of decision at stage n(ml)

. Define the transition and return functions

; ta? Tn? tkl’ tml’ Tm1° A !

forn-1, 2, ..., Nandm=1, 2, ..., M

[TRy

|

3 ;"k - -

';f fml(xml’ Xo1) :ax rml(xml, dml) fml(xml’ %X01) :ax [rml(xml’ dml) + fm-l,l

i ml ml
i s.t. xg, = tml(xml’ dml) (cml(xml, dml)’ x01)]

? I
1]
i -
3 m = Py

4

Suodun
I

Surnii g

.

Save loop return fMl(’%il’ x01)

2]
1

Yes ‘/,/:Jf\;_uo
:+ ~ v

fn(xn) = :ax rn(xn, dn) fn(xn) = l:ax [rn(xn, dn) + fn_l(tn(xn, dn))]
n n

2"

No
n=n+1I4?'

e

A=k -
Yes
n =k

¥

= gix [r, (x> d) + -1 (e (s) + By (505 €15 (g 4 0)]

©

£ Cee ¥or)

n=n+1

ﬁ fn~l-M.1(xn’ xOl) - glax [rn(xn’ dn)‘ + fn-l+Ml(‘:n(xn’ dn)’ x01)]
n

No

Yes

fj+Ml(xj) = maxd[rj(xOl, xj, dj) + Ij-1+)il(tj (xj, dj)’ x01)]
Xnq 2
01’ "k
n=n-+1
| :
l Ak fni-l*ll(xn) = :ax [rn(xn’_ dn) + fn-1+l~ll(tn(xn’ dn)]
n

No

Yes

*
'[Determine the optimal system input XN such that

*
g (%) = max £ (xyy

*
And find the optimal decision dN

77

L

BEENC sawty Vs, o

et
J

B §

Compute the optimal input, decision, and return
at each stage from N - 1 down to 1 and from M1

down to 11 as follows:

%
x = tn+1(xn+1’ dn) s, n=N-1, ..., 1, n#3j-1
* * *
r = rn(xn, dn) , n=N-1, ..., 1, n#j
* _ (* * d*)
*5-1 7 5501 X530 %
* - (% 13 d*)
T3 T FitForr *yr %
* * %*
N = G e 4

= * -
%o = toe1,1 1,10 9pr1,1)0 ®

* * d* _ 1
T rml(xml, ml)’ m=M, ...,

Print Output

S TN

P e TG 8 e

5.2 An Example of a Feedback Loop System

To illustrate the optimization of a feedback loop system, we consider

an example with the structure shown in Figure 5.3 and the data given in Table 5.1.

The objective is to maximize the sum of the stage returns.

X X X X
31 21 11 01
31], 21 1|,
X6 p X5 s A A X3)) 5 X s[1
—D f——> S L >
I

Figure 5.3: A Feedback Loop System

Table 5.1;: The Return and Transition Functions of the System
in Figure 5.3

Stage Decision Return Transition Constraints
11 d r,, = x.+d % x_+d
11 11 11 "1l 01 11
21 dz1 Tyy = Xo + d2§ x11+ d21 0< xis 25 i 46
31 dy £y = Kyt g Xyt dg 0s x < 4
1 4, £, = x b4 et %) 4 0sx <15

Table 5.2: Computer Output for Feedforward Loop Example
in Figure 5.3

DECISION TABLE AT STAGE 11

1. 2 vk yordoseorok gelor kool ogolokork (******&*#*#*#*?“m¥***k*?*w
1. 2.4&¥$$m“.m*#*x#x**x*w#x* ROk ok ook ek Aokolok ok kol kek k

$ 0, 1. 2.*#*****4***akk**x»»*k***m*%*?*# ***#**r*** KKKk
‘%x*x** 0, 1. P PSS 53¢ F N #x#***»<W¥***#x*x*4?m»»x¥##?*#*
SRRk Rk Q. 1, ~.*?**$”#V#**k$*x%***%#%***v&«»*i ok sekkokk
ky***?&*%** KRR K O. i. RES IS ELISTEL I TF TSP SFEES &3 *»**#
Yi%*##%#k&?****m*?****?* O, 1. 2 ¢ okeiolokokoloiok ok koo xdekdek ek okeiork
sukasiockeRsorckokksckokslor ok ek ok kR 0. 1. ¢.*A****%**¥*************#*
i*»k R RORR R Nolckokok kol sktok nlokeskololoR SRRk sor 0, i. k**v**##?%** 235 ¥E4
ook ek dokor s ek ok ek ok okololok 0. 1. 2. gk kxx*k

??*#3m$m***k$Ww Forskskojosokskoloksk ok ok ook SOk X 0. 1. 2ekckRkdhREx

*WXMmmmx*****m,.$#4i CRckcRRksoR o)k sk solololorek ool ookl 0. i, 2 dekkkx
A*4#x$v%x*k“"*k# Jotokaokdok SokNoior Selokekek 0. . 2,
w#**#m&*&é%#t*m$k‘ Sl Gk Rk soRlek Aor Soloksk ek dor ook Ak 0. 1.
’a.,$****$¢ f*L¥¥Y‘“#A¥1W$ SRRSO RSO R SCIR R oK iRk RoRk R ookl kok ok O

>
*

e -5’:

DECISION TABLE AT STAGE 21

1, 2, 2,
0. 1. 2,
2. Q. 1,
2, 2, Q.
2, 2,
2 2 2

e

2

<t

2

-
2.
")
s
2,
2,
2,
-

o

.
-
-
°
-
.

-
-
LA NN
.

-

.
-
-
-
-
-

[N

-
L 4

1)

-
.
-
.
-
&)
-

k.

*>
-
-
-
-
-
L)
-

-
-
-
-

-

-

L 4
IR KM
RN RPDNRN
RN MR
-

-
-
-
-
-

LIS I o8
L J L d

L 4 L]

3 M

L]

L 4 L J

SN

L 4 -

[SESEAR AN N NS

MK O,
* e o+ o
-

r 3
-
-
-
-
-
* o
-

-
-

-
-
-
-
*
.

RPN RNRRIERPDO DR RN
O -
-
L 4

RMMNRORRKNRPNNRRRNROE

C I NN RN NN

AESEARS TSR EANS RN

RN RN
RINNRKRRRNC

RN

R RS

L 4

NG

-
.
-

-

.
e A T e .t Y| TYCIE AT N- SS T e T

DECISIOu

J

L,
O,

2,

-
2
-

-

-

-
8]
-

-

-

>
-
-
-

AR - - G

-
*
* o

O=MRMNMNMNMN

P Co= RIS

RRENRERR

PRPRIKR
>

—ANMKN

-

‘% —

‘e o g g o o o op o o o o LX % o g e g o o
‘'t ‘T ‘e ‘€ ‘f ‘g ‘e 'f ‘w 'y e ‘g ‘g ‘L ‘K ‘E ‘€ ‘e ‘.
‘5 ‘L ‘n ‘e ‘% ‘5 ‘s ‘'t g > i ‘E ‘5 ‘L ‘g ‘s ‘e ‘e ‘e ‘%
‘g > 'E ‘e ‘e ‘e " ‘v °f ‘£ ‘e ‘L i ‘e ‘g ‘s ‘£ ‘e ‘'t
.n .n on on .n -n on oMo. .n .n .n .n .n on on -n -n on on
.. .M . on. oH on on .H .n omu .n on .n .n on cn .n .n -n on
' ‘E ‘g ‘g ‘g ‘g ‘e ‘% ‘f 'r ‘s A S S ‘f ‘€ ‘€ ‘£ ‘e 't
“w (X% [X 0 X o e 0 XN o o o o e o ‘e o o e
‘£ ‘L ‘£ ‘L ‘e 'L ‘g ‘L ‘e ‘'t ‘s ‘s ‘e ‘g ‘£ 't ‘E ‘t ‘L
o o ‘e e o e o (X g XS ' X o 0w o o o0 g o
(B [} o LB Y o (X% g o o o0 op o e o o 0w o X
‘£ ‘£ ‘e Y ‘1 'c 'L ‘g ‘e ‘L ‘f ‘£ ‘e i 'E ‘£ ‘£ ‘'L ‘s
A > ‘£ ‘' ‘5 ‘E ‘£ ‘0 ‘1 'c ‘e ‘T ‘T ‘£ ‘g 'E ‘g ‘£ 'L
L S 5 ‘e ‘e ‘g ‘e 'L ‘'t ‘'t 'e ‘£ ‘0 1 b4 ‘€ ‘€ 't ‘g i
‘c 't ‘g 't ‘e ‘e ‘g ‘g 'f ‘e ‘£ ‘e ‘e 'L ‘e ‘o 't 7 'L

e & » @ o @ ® ® o s b e = e
MmO MmMIMMMIMIMIMIM e

..ﬂ .ﬂ oN .N e .N .N .N .N .N oN oﬂ oN .N oN .N .N .N B oﬂ .N .N .N -N .N .N
‘T ‘c ‘Z 'z Tt T 2 ‘T K4 ‘c ‘e ¢ ‘T ‘T *C 4 R4 ‘c 'Z *Z A 4 'z 'T
‘T ‘e 4 ' K4 ‘< 'C ' ‘T 'e ‘g ‘e T ‘T ‘c ‘T 'z 4 ‘c p4 ‘T ‘c < ‘' ‘<
‘T *c 'z ‘c °c 'z 'z ‘T 'C 'C ‘g N4 ‘T 'T ‘< 'c ‘g 4 ‘e K ‘c °Z 4 ‘Z ‘c
i 4 ‘c ‘T 4 s A ‘e *Z ‘e ‘c ‘e ‘e ‘e ‘0 ‘e 'c ‘'z ‘€ ‘T ‘e 4 'z ‘% 'z 'z -
bR ¢ ‘< 'T ‘c e ‘o ' 4 ' 'E ‘v, ‘b ‘c 'c T ‘c ‘c ‘e ‘c ‘T ‘c * *c < ‘c (]
‘1 ‘e ‘e ' K ‘C ' ‘C ‘ ‘T 'c €& '@ > pEA ‘c ‘c 'c °C ‘c ‘c ‘T ‘c ‘e KA
‘1 ‘c '3 3 ‘T 'c 'c ‘g ‘€ 'g 'C ‘c K °C ‘g 'C 'c 'c ‘T ‘e g 'z 4 e *Z
‘1 °Z ‘T 'C - '7 ‘1 ‘T, 'C '8 *c 'c 'c ‘ez ‘T ‘C A 'c 'z 'c *Z ‘'z 4 ‘c
‘1 ‘0 'y 7 ‘T 4 4 ' ‘e ‘T ‘T ‘1 ‘c ‘c ‘e ‘7 ‘c ‘c ‘T °c 'z 'c °Z hr4
‘T A ‘c °Z KL ¢ ‘1 '3 ‘C ' ‘c ‘c ‘'c 'T ‘17 ‘T 4 ‘c ‘C h4 'c ' °C °<
‘1 ‘c g4 'C KA ‘T ' ‘c ‘e ‘0 '3 ' ‘1 'c ‘T ‘c 4 *c ‘T ‘1 ‘1 < 'c ‘< ‘c
°1 *C ‘c 'c ¢ T T T E ‘'z 'c ' *C *Q °1 ‘T ‘T 4 4 4 *Z AEARR | ‘7 ‘T
i ! ‘< ‘< ‘< ‘c T ' ‘T ‘c ‘C ‘c A 'z ‘'c ‘c 'c ‘e ‘0 ‘1 ‘1 ‘T 'c °C °c ‘e
‘1 'g ‘e *e T T 'c ‘g ‘' 'c ' 'c ‘e 'c ‘c 'c ‘c ‘c ‘e - ¢ ‘c 0 ‘7 i 4 °T

«553204d WIY3IS NIYK ¥04 379vl NOISIJ3d.

panut3uo) z°¢ STqel

RN 4

S, T

e oo e i

o .M oN
o om ‘e
N oN ‘e
on on on
o .M ‘e
om om on
' on e
o 'f ‘8
.m.;. .n
N .N N
e L ‘e
ow ‘e ‘e
‘T T g
e ‘g ‘e
XN o ‘e

- - - - - - > L d
CICICI I O

-
4

N ‘e ‘e
.N .n ow“
o N om.;.
°r ‘8 ‘e
2 e e
.M” L3N .m“
L ‘e e
e ‘e e
o LEN ‘e
'C ‘f 'L
e e ‘e
‘°f ‘8 ‘e
L § L3 e
‘e ‘g ‘L
'R E

panuTjuod z°S aI1qel

| =n e ae e et e e bl bl gy e bt bgd

Table 5.2 Continued '

3. 3, 3 3. 3. 3 2. 3 3, 3,
O, 0. 0, Q. 0. 0. 0. 0. 0. O
O, Q. 0. Q. 0. Q. Q. 0. O, O,
O, 0. 0. Q. 0. 0. 0. 0. 0. 0.
Q. 0. Q. Q. 0. O, 0. 0. 0. 0.
O, 0. [0. 0. 0. 0, O, 0. 0.
0. e O 0. O, Q. 0. O, 00 0.
Q. Q. 0 0. Ve 0, O L e O«
(N 2. 2 N ity D Q. Q. 0. 0.
VN N i U VN Oy Qe G, O O,
Qs 0N 0. O, O O 0. Q. 0. 0,
Qs QO [[0 0, Q. 0. G, 0, 0.
0. 0. O, Oy (VI Q. O, Q. 0. 0.
Q. Q. O Q. Q. 0. 0. 0. O, 0,
0, O O, G Q. Q. 0. L0 0. 0.

~ T -~ e -

e e Do S -

*ORTIMAL LOOF OUTHFUT FOR EACH INFUT VALUES
OF THE CORNVERGING STAGE J¢

0 11
1 11
2 i1
3 11
4 11
S 11
b 11
K 12
g 12
9 12

*STAGE INPUT DECIS FRETURN®

6 4 3 7
S 7 3 22,
4 11 3 14,
3 14 3 17,
2 17 J 20,
1 20 2 22,
31) 2 10,
21 2] 2 12,
11 10 2 14,

TOTAL OFTIMAL RETURN fS 138,
EOI. O FILES. 1 (ECS. 1187 WORDS,
/

. e

In Table 5.3 we display a summary of the results of this example problem

ol Bed oy

while the decision table at each stage is shown in the computer output of Table

'

5.2.

p—
'.

e~

Table 5.3: Optimal Input, Decision, and Return from Table 5.2

e

l&.
i' Stage Opt. Input Opt. Decision Opt. Return
i. 31 6 2 10
- 21 8 2 12 ‘
" 11 10 2 ‘ 14
J 6 4 3 7 :
: 5 7 12y 3 22 ' e
‘. 4 11 3 14
i1 3 14 3 17
) 2 17 3 20
) 1 20 2 22
* () represents the optimal input from feedback loop to stage 5
-
;
|

N
)

Chapter 6

SOLUTION OF SPECIALLY STRUCTURED NONSERIAL NETWORKS VIA
THE IMBEDDED STATE SPACE DYNAMIC PROGRAMMING

0.1 Introduction

In this chapter, we want to show how certain nonserial networks with
special structures can be solved using some recently developed dynamic programming
algorithms. The structure in question refers not so much to the network configura-
tion as it does to the nature of the return functions and the constraint spaces.
For example, when the return functions are discontinuous and, in particular, are
(transformable to) step functions, the imbedded state space dynamic programming
developed by Esogbue and Morin [20] is an especially potent procedure. This
method mitigates the usual curse of dimensionality problem inherent in most
dynamic programming solutions by reducing an M-dimensional search problem to a one
dimensional dynamic programming over a sequence of imbedded state spaces. ‘

An excellent application of this procedure to the multidimensional knapsack
problem was discussed by Morin and Esogbue while Morin and Marsten [21] give the
details of an algorithm developed for the computational solution of large scale

dynamic programming problems. .

6.2 Qutline of the Imbedded State Space Approach (ISSA)

The key to this approach is the exploitation of the discontinuity preserving
properties of the maximal convolution to transform a search over the entire state
space to one restricted to a set of imbedded state spaces. This proposition is
propounded in [20]. We outline the procedure in the sequel.

Consider the following multidimensional knapsack problem in which the

rn(') are discontinuous and furthermore step functions:

N

max £ r,(x,) (L
j=1 3777
N

s.t. T g,.(x,)<b , 1=1,2, ..., M (2)
PR 1

(3)

ST

LRy - A

where Vj, Sj = {0, 1, 2, ..., Kj} and rj : Sj > R+ is nondecreasing with rj(O)

., b Y7/, 0.
m

- =0, ¥, . ; .. ¢ Sj f R+_w1th gij(O) =0 and b = {bl, b2’

Let f(n, B) be the maximum objective function value of an undominated
feasible solution to (1), (2), and (3) in which only the first n variables
(xl, x2, ceey xn) can be positive and whose resource consumption cannot exceed

N N

B = (B, B,y ee+s B). When I r, (x.) <
1 2 n . - .
=1 3 3

) r.(x,) and

t ™

g..(x.) >
1 13

N -~
z gij(xj) with strict inequality holding in at least one of the (M+l) inequalities
j=1

the feasible solution, x = (xl, Xos woes xn) is said to be dominated by the feasible

solution, x = (xl, Xys wees xn).
For 0 < n < i, let Rn be the (domain) set of resource consumption vectors

gn(k) = [gln(k)’ gzn(k), cens gZM(k)] of all undominated feasible values of X, = k.

- Also, for 1 < n < N, let Fn be the set of resource consumption vectors B of all

undominated feasible solutions (xl, xz, ooy xn) to the following subproblem:

n
‘ max I r,(x,) (4)
| n
.t. -
: s E gij(xj) < bi ,1i=1,2, ..., M (5)
: 3=l
~i xj € Sj » =1, 2, » N (6)

Then, as demonstrated in []

Foc R UF _,UR®F D}, n=1,2, ..., N (7)

where (Rn() Fn_l)'denotes the set obtained by forming all sums of one element of

Rn with one element of Fn— The algorithm proceeds by recursively generating, for

1
all 1 < n <N, all feasible candidates for Fn from Fn—l and Rn via the following

functional equation:
£(n,8) = {r (k) + £(a-1, B-g (K) | g (k) & R, (8)

(8-g (K)) e F_ _,, 8 < b}

86

,~ AD-A130 885 DYNAMIC PROGRAMMING ALGORITHMS AND ANALYSES FOR 2/2
NONSERIAL NETWORKS PART I..(U) GEORGIA INST OF TECH
ATLANTA SCHOOL OF INDUSTRIAL AND SYSTEMS. A 0 ESOGBUE
UNCLASSIFIED JAN 83 ARO-17672.1-MA-H DAAG2$-80-G-0010 F/G 12/2 NL

o nuw.m. o acads

Carmpar &

e LA R caa

B
|l
£k J2o

L

lg
22 s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

avra

T v W MRy gl YR R A AR 29 P

R o o b AN A P b bt ar Ve ¢ it 1o RS DS AN AN e SRIPAE SPUOTIE VE PR - o

? and the boundary condition
£(0,0) = 0 (9)
The implication of the foregoing is that instead of calculating f(n, 8),

¥ 8 e R, we only need to calculate it for 2 ¢ Fn while noting that fn can be

P

constructed recursively from Rn and Fn_ Furthermore, we can usually eliminate

1

certain elements of either Rn(J Fn-l or Rn() Fn-l as being inefficient or infeasible

thereby reducing the list length of Fn

.

In this way, an M-dimensional search problem is reduced to a one dimensional
§ dynamic programming problem on the sequence of imbedded state spaces Fo, Fl, ooy
Fnt: . An algorithm using the above procedure to constriict the successive imbedded

state spaces and terminate with Fn is illustrated in Table 6.1.

6.3 An_Application of ISSA to a Feedforward Loop System

Consider the following nonserial network where each stage has a return expressed
as a function of the input variable and each of the input variables has some con-

straints that need to be met. This is a simple feedforward loop system with con-

i
—{—" +—

Figure 6.1: An Example of a Nonserial Network
(Feediorward Loop)

straints.

!
:
}
!
e
%
¥
I
!

e e g et

Suppose we have one constraint for the main serial process and the other for the i |

feedforward branch. That is, the first is for stages 1, 2, and 3 and the second

for stages 1, 4, 5, and 3. Then, our problem can be formulated as follows: (10) - (13)

|
(| !

ik AT

This

Step
Step
Step
Step

Step

Step

Step
Step
Step

Step

Step

Steﬁ

Step

Step

|
l Table 6.1:

Steps of the Imbedded State Space Algorithm for the Multidimensional

Knapsack Problem

algorithm may be decomposed into the following steps:

1

10

11

12

13

14

Set n=0, Fo = {80} and f(o,Bo) ~ 0, where 80 =0

n ¢ ntl and k4¢— 0

If n >N, stop.

F .= {8°, Bl, ..., 8%} , whereP = | F

. -1

n-1

l:‘n(—-Fn—l
k ¢— k+1 If k > K, go to step 2.

Sn(k) = [gln(k)’ gzn(k), cens gMn(k)]
p4—0
1f gn(k) + 8P isinfeasible go to step 13.

1f gn(k) + Sp is dominated by some point in Fn’ go to

Step 13.

P
Fnd——- F U {Sn(k) + 87}

£, (g (k) + 8")) g—r (k) + £(n-1, 8P)

Eliminate all the dominated points from F . i.e., Fn ¢ Fn minus

{all points dominated by gn(k) + 8P}

p 4— pt+l

1f p < P, go to step 9.

Otherwise, go to step 6.

88

TR

max rl(xl) + r2(x2) + r3(x3) + ra(xa) + rs(xs) (10)

S.t. gll(xl) + glz(xz) + g13(x3) < bl (11)

8y (X)) + 8y3(x3) * 8y, (x,) + gy5(x5) <D, (12)
‘ X, €S, (13)
57

x where rj(xj) and gij(xj) represent the return and elements of the i-th constraint
at stage j respectively.

Let b = (6, 10) and the values of the rj and gij functions be tabulated as in

Table 6.2.

Table 6.2: 1Input Data for the Exaﬁple

M 45 M HT 100 K e R X 0 AL I, 143 2 670 e T 1 L0 5

T2 832 83231 T3 813 B33 814 B4

Notice the special s:tructure of this problem in which the RHS are constants as

opposed to the usual system (see example 4.3) in which they are expressed as

functions of the input state and decision variables.

We will now illustrate how the imbedded state space algorithm whose steps

were given in Table 6.1 may be used to solve the above nonserial network problem.

Consider the five stage problem as follows:

l For Stage 1: \'1 = {(0; 0), (1’ 2)9 (2, “)0 (3v 6)}; Fo = {(0’ 0)}; v1® Fo = ;

{¢(o, 0), (1, 2), (2, 4), (3, 6)}. Since no points are infeasible or dominated we

have Fl = {(0, Q), (1, 2), (2, 4), (3, 6);. The following tables are then the

result of the computations at the first stage:

4 4

5 ' olo

(M+1) (M+2)
The fourth column appended to the PERMUTE table points to the corresponding entry
in the TRACE table
For Stage 2: V, = {(0, 0), (2, 0), (3, 0), (4, O}; vV, @F, = {0, 0), (1, 2),
2, 4), (3, 6), (2. 0), (3, 2), (4, &), (5, 6), (3, 0), (4, 2), (5, 4), (6, 6),
(4, 0), (5, 2), (6, 4), (7, 6)}. The point (7,6) is infeasible since = (6, 10).
The point (2, 0) dominates the point (2, 4). In the same way, (3, 0) dominates

(3, 6)and (3, 2), (4, 0) dominates (4, 4) and (4, 2), (5, 2) dominates (5, 6) and

(5, 4). Finally, the point (6, 4) dominates (6, 6). So we have F2 = {(0, 0), (1, 2),

2, 0), (3, ®, (4, 0), (5, 2), (6, 4)} with the following results:

For Stage 3: V3 = {(0, 0), (3, 4), (6, 8), (9, 12)}, V3 @ F2 contains 28
points, of which 16 are infeasible and 5 are dominated. This leaves F3 = Fz =
{(, o, 1, 2), (2, 00, (3, 0), (4, 0), (5, 2), (6, 4)} with the same tables

given in Stage 2.
For Stage 4: VA = {(0, 0), (0, 3), (0, 5), (0, 6)}, V4 ® F3 contains 28
points all of which are feasible. Two points are dominated. Finally, we have
F, = {0, 0), (1, 2), (2, 0}, (3, 0), (4, O), (5, 2), (0, 3), (1, 5), (2, 3),
3, 3, 4, 3), (5, 3), (9, 3), (1,), (2, 3), (3, 5), (4, 5, (5, 7), (0, 6),
(1, 8), (2, 6), (3, 6), (4, 6), (5, 8),.(6, 10)}. At the end of this stage, we
have the following tables for the FLIST, PERMUTE, and TRACE computations (see next
page).

We have used X's in the tables to indicate spaces which, although not currently
filled, are useable. Although these appear only in the PERMUTE tables both for
stages 2 and 4 in our computation, they should be used in either the FLIST or

PERMUTE tables at any stage where their use in dictated.

Notice that the tables begin to look alike as the computational process proceeds

to the final stage computation. This is as it should be. Let us now complete the

computations for the stage 5, the final stage.

- O T T

R Tt i Y g b e A it b o o 20 1m0 B A o 6

; ‘ At Stage 5: V. = {0, 0), (0, 8), (0, 11), (0, 14)}. Vs () F, contains 100

points of which 69 are infeasible and 6 are dominated. As a result, we have

F. = F, and the resulting tables are the same as in stage 4.

5 4
Now we need to find the optimal solution at each stage, The zero in the

third column of the PERMUTE table shows that the maximum return is achieved at

*
b = (6, 10) with objective function value 21. To recoanstruct the optimal x , we

* i
go to the TRACE entry in row 28. Here, we find that X, = 3. Proceeding to row 9 ?

* *
of the same table, we find X, = 3. Finally, in row 3 we have X = 2. All other

*
variables are zero and we have x = (2, 3, 0, 2, 0) as the optimal solution and

optimal value of 21.

6.4 Analysis of the Imbedded State Space Technique

We will now analyze the storage requirement of the successive imbedded

state space technique in solving the following nonlinear knapsack problems.

N

max 121 T (x)) 1

s.t. I gij(xj) < b1 s, 1i=1, «.., M %

x; €S, v 3=1, ooy N i

where Sj ={0,1, 2, ..., kj} for all j. !
To simplify our analysis we will assume that the maximum permissible value ?

for each variable is taken to be the same, {.e. k, = K for all j. Then the

J

storage requirement of the technique can be analyzed by considering the following

three aspects:

6.4.1) Storage Requirements for the Input Data.

) and bi as the input data. Since ve ‘;

3 3

! The algorithm needs r (xj). gij(x
have M constraints, N variables and K discretization levels of each variable,

l the storage requircment for rj(xj) and sij(xj) becomes (M + 1) KN. To store ‘ Q

the a&allable resources the algorithm requires M elements in an array. Hence the

storage requirement for the input data becomes (M + 1) KN + M,

6.4.2) Storage Requirement for the Three Main Tables.

The three main tables in the imbedded state space algorithm are the
FLIST, PERMUTE, and TRACE tables. FLIST table shows the resource used and
return for each undominated feasible soluti&n. PERMUTE table gives the best,
second best, ... solutions at each stage in conjunction with the FLIST table.
Finally, the TRACE table is used in genefating optimal solution at the final
stage N. It traces from the value of XN to X, recursively.

Since the above three tables store only the feasible and undominated
(for FLIST and PERMUTE tables) solutions at each stage, the storage requirement
actually used is quite different for different problems. . Hence, we will analyze
the worst case performance of the algorithm. That is, at each stage every point
generated is feasible and undominated by the points at the previous stage.

Note that we have K + 1 discretization levels for each variable xj, j=1, 2,
««.y N and M constraints and one return. At each stage, we have K + 1 times the
number of points in the previous stage. By the above assumption, no. points are
infeasible and dominated. Hence, at the final stage N, each table has (K + 1)N
elements and the storage requirements for the main three tables are 2(K+1)N (M+1)

+ (k+D)Y n2).

6.4.3) Storage Requirement for the Feasibility and Dominance Test.

As shown in the feedforward loop example, the algorithm discards the infeasible
or dominated points at each stage. Also, the remaining feasible and undominated
solutions need to be sorted for the PERMUTE tables. The itemized storage require-
ments can be obtained from the computer algorithm. Here, the total storage require-
ment for the feasibility and dominance tests is given by

6»:+l.(1-(+1)+(|<-o-1)1.q
Now, the above three storage requirmennts in the imbedded state space technique

can bé summarized as follows:

|
!§i
?
!
{
|
i
)
s

Storage requirement for the input data = (M+1)KN+M
Storage requirement for the three main tables =-2(K+1)N (M+1) + (K+1)N (M+2)
Storage requirement for the feasibility and

dominance test = 6% + 4(Myl) + (K+l)&

The total is a) + b) + ¢) or (K+l)N (3M+3) + KN(M+1l) + 6N + SM + 4

A G 1 B el s sl . %

6.5 Discussion on the General Nonserial D.P. Network Algorithm and the
Imbedded State Space Technique

o Tl -

Let us compare the two approaches using the following feedforward loop

system with N stages as our leitmotif.

i .—‘<M/M“~Ihﬂ:‘<‘ .

14

e

s

Figure 6.2: A General Nonserial Feedforward Loop Network

SR AR - o TP ARER: RMTEI 8

The general nonserial D.P. network algorithm solves the following problen:

(P1) y
L rn(xn, dn)
n=1

s.t. tn(xn, dn) =X n#j, £+1

-1

t, (x,, x

3737 Toi ? £+1)

(x d

241> Y41 = %

tﬁ+1 oj

X, € Xn, dn € Dn
On thé other hand, the imbedded state space technique was used to solve the following

nonlinear knapsack probiems:

gij(xj)f_ b., 1i=1,2, ..., M

x, € X

3 3

By comparing the two problems Pl and P2, it is clear that if we delete the decision

variables-dn, n=1, 2, ..., N, then we have the same objective function. However,
notice that the two problems are quite different in the structure of the constraints
sets. In Pl, the constraints are given as the transition function at each stage
in the network, while they are given in inequality forms in P2. Also notice that
the RHS of each counstraint of Pl is not a constant as in fZ, but still a variable.
Now suppose that the constraint in P2 is changed as N separate ones at each stage,
i.e.

gij(xj) j_bi, for i=1, ..., M, j=1, ..., N.
Then, gj = (slj’ ng’ ceny gmj) can be considered as a vector transition function at
stage j, j =1, ..., N. However, at the junction stage j in the Figﬁre 6.2, we

have two separate transition functions gj(xj) and gj(x°)} as opposed to tj(xj, xo,)

j J
in Pl when the decision variables are deleted. Hence, if the transition functiomn at
the junction stage j is separable, i.e.;

Eyxyr Xop) = 8y(xp) + gy(x,)
then the use of the imbedded state space technique may give a clue to the solution
of general nonserial network problems. However, the inequalities in the con-
straints and the difference in the RHS in the two problems will seem to obstruct

the direct use of the technique for the general nonserial network structures. Never-

theless, the ISSI has considerable potential for use in solving large scale state

vector dimensional problems in nonserial networks. Its utility will be enhanced by

the us of fathr- ng approaches such as those suggested in the hybrid algorithms

describe. .n [2i].

s

,.*.

10.

11.

12.

Reéuencu

Beightler, C.S., D.B. Johnson and D.J. Wilde, "Superposition In
Branching Allocation Problems'", Journal of Mathematical Analysis
and Applications, Vol. 12, 1965, pp. 65-70.

Beightler, C.S. and William Meier, "Design of Optimum Branched
Allocation System," Industrial and Engineering Chemistry, Vol. 60,
No. 2, February 1968, pp. 45-49,

Beightler, C.S. and William Meier, "Branch Compression and
Absorption in Nonserial Multistage Systems," Journal of Mathematical
Analysis and Applicatioms, Vol. 21, 1968, pp. 426-430.

Bellman, R.E.,A.0. Esogbue, and I. Nabeshima, Mathematical Aspects of
Scheduling and_Applications, Pergamon Press, 196¢

Bertele, Umberto and Francesco Brioschi, "A New Algorithm for the
Solution of the Secondary Optimization Problem'in Nonserial Dynamic

Programming," Journal of Mathematical Analysis and Applications,
Vol. 27, 1969, pp. 565-574,

Bertele, Umberto and Francesco Brioschi, " A Contribution to
Nonserial Dynamic Programming, Journal of Mathematical Analvsis
and Applications, Vel. 28, 1970, pp. 313-325.

Bertele, Umberto and Francesco Brioschi, "A Theorem in Nonserial
Dynamic Programming," Journal of Mzthematical Analysis and Applications,
Vol. 29, 1970, pp. 351-353.

Bertele, Umberto and Francesco Brioschi, Nonserial Dynamic
Programming, Academic Press, New York, 1973.

Brown, L.G., "Optinmization of Nonserial Stochastic Decision Process

by Dynamic Programming,' Ph.D. Dissertation, University of Arkansas,
1971.

Collins, D.C., "Reduction of Dimensionality in Dynamic Programming
via the Methods of Diagonal Decomposition," Journal of Mathematical
Analysis and Applications, Vol, 30, 1970, pp. 223-234,

Collins, D.C. and Lew, Art, "Dimensional Approximation in Dynamic
Programming by Structural Decomposition," Journal of Mathematical

......

Esogbue, Augustine, '"Fundamentals of Modern Dynamic Programming,"
Mimeozraphed Notes, Department of Operations Reseacsch, Case Western
University, Cleveland, Ohio, 1970.

97

B E e

-

A AR e LR

S S

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

. i et " it e e e e ' '“-1

Esogbue, Augustine, and Marks, Barry, "The Status of Nonserial
Dynamic Programming," Management Science, Theory, November, 1972,
pp. 350-352.

Esogbue, Augustine, and Marks, Barry, "Nonserial Dynamic Programming - A
Survey,'" Operational Research Quarterly, Vol. 25, No. 2, 1974.

Esogbue, Augustine, and Marks, Barry, '"Dynamic Programming Models of
the Nonserial Critical Path-Cost Problem, Management Science, Vol. 24,
No. 2, 1977, pp. 200-209.

Esogbue, A.0. and NX. Warsi, "An Efficient Algorithm for the Solution

of a Class of Nonserial Dynamic Programming Problems," Technical Report
No. J-83-2, School of Industrial and Systems Engineering, Georgia
Institute of Technology, Atlanta, Georgia

Garey, M.R. and D.S. Johnson, Computers and Intractability: A Guide

to the Theory of \NP-Completeness, W.H. Freeman and Company, San Francisco,
1979.

Mesarovic, }.0., et al., The Theory of Hierarchical, Multilevel Systems,
Academic Press, New York, 1970.

Mitten, L.G. and G.L. Nemhauser, '"Multistage Optimization" Chemical
Engineering Progress, Vol. 59, No. 1, 1963, pp. 52- 60.

Morin, Thomas and Augustine Esogbue, "The Imbedded State Space Approach
to Reducing Dimensionality in Dynamic Programming of Higher Dimensions,"
Journal of Mathematical Analysis and Applications, Vol. 48, No. 3,
December 1974.

Morin, T.L. and R.E. Marsten, "An Algorithm for Nonlinear Knapsack
Problems," Management Science, Vol. 22, 1976, pp. 1147-1158.

Nemhauser, G.L., Introduction to Dynamic Programming, New York:
John Wiley and Sons, 1967.

Nemhauser, G.L. and Z. Ullman, "Discrete Dynamic Programming and
Capital Allocation," Management Science, Vol. 15, No. 9, May 1969,
pp. 494-~505.

Parker, M.W., "Nonserial Multistage Systems-Analysis and Applications,"
Unpublished, Ph.D. Dissertation, University of Arkansas, 1969.

Parker, M.W. and R.M. Crisp, "Decomposition of Converging Branch Multistage
Systems," AIILE Traansactions, Vol 2, 1970, pp. 185~190.

Wilde, D.J. and Beightler, C.S., Foundations of Optimization, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1967.

98

_—

27. Wong, Peter and Robert Larson, "Optimization of Tree-Structured
Natural Gas Transmission Networks,'" Journal of Mathematical Analysis
and Applications, Vol. 24, 1968, pp. 613-626.

Yoy A STV =% + cif gt =T

A St g e <l et A DS gt

g e T e T

1
i
|
4
]
f
13
4
j
.
) .
99 L

